1,707 research outputs found

    Antifreeze Proteins in the Primary Urine of Larvae of the Beetle \u3cem\u3eDendroides canadensis\u3c/em\u3e

    Get PDF
    To avoid freezing while overwintering beneath the bark of fallen trees, Dendroides canadensis (Coleoptera: Pyrochroidae) larvae produce a family of antifreeze proteins (DAFPs) that are transcribed in specific tissues and have specific compartmental fates. DAFPs and associated thermal hysteresis activity (THA) have been shown previously in hemolymph and midgut fluid, but the presence of DAFPs has not been explored in primary urine, a potentially important site that can contain endogenous ice-nucleating compounds that could induce freezing. A maximum mean THA of 2.65±0.33°C was observed in primary urine of winter-collected D. canadensis larvae. THA in primary urine increased significantly through autumn, peaked in the winter and decreased through spring to levels of 0.2–0.3°C in summer, in a pattern similar to that of hemolymph and midgut fluid. THA was also found in hindgut fluid and excreted rectal fluid, suggesting that these larvae not only concentrate AFPs in the hindgut, but also excrete AFPs from the rectal cavity. Based on dafp transcripts isolated from Malpighian tubule epithelia, cDNAs were cloned and sequenced, identifying the presence of transcripts encoding 24 DAFP isoforms. Six of these Malpighian tubule DAFPs were known previously, but 18 are new. We also provide functional evidence that DAFPs can inhibit ice nucleators present in insect primary urine. This is potentially critical because D. canadensis larvae die if frozen, and therefore ice formation in any body fluid, including the urine, would be lethal

    Arginine, a Key Residue for the Enhancing Ability of an Antifreeze Protein of the Beetle Dendroides canadensis

    Get PDF
    Antifreeze proteins (AFPs) can produce a difference between the nonequilibrium freezing point and the melting point, termed thermal hysteresis (TH). The TH activity of an antifreeze protein (AFP) depends on the specific AFP and its concentration as well as the presence of cosolutes including low molecular mass solutes and/or proteins. We recently identified series of carboxylates and polyols as efficient enhancers for an AFP from the beetle Dendroides canadensis. In this study, we chemically modified DAFP-1 using the arginine-specific reagent 1,2-cyclohexanedione. We demonstrated that 1,2-cyclohexanedione specifically modifies one arginine residue and the modified DAFP-1 loses its enhancing ability completely or partially in the presence of previously identified enhancers. The stronger the enhancement ability of the enhancer on the native DAFP-1, the stronger the enhancement effect of the enhancer on the modified DAFP-1. The weaker enhancers (e.g., glycerol) completely lose their enhancement effect on the modified DAFP-1 due to their inability to compete with 1,2-cyclohexanedione for the arginine residue. Regeneration of the arginine residue using hydroxylamine fully restored the enhancing ability of DAFP-1. These studies indicated that an arginine residue is critical for the enhancing ability of DAFP-1 and the guanidinium group of the arginine residue is important for its interaction with the enhancers, where the general mechanism of arginine−ligand interaction is borne. This work may initiate a complete mechanistic study of the enhancement effect in AFPs

    Genetic relationships among some Hesperis L. (Brassicaceae) species from Turkey assessed by RAPD analysis

    Get PDF
    In this study the phylogenetic relations among infraspecific, specific and supraspecific categories of 6 taxa of the genus Hesperis collected from different parts of Turkey were investigated by RAPD analysis.The results of the RAPD analysis support the idea that H. bicuspidata (Sect. Hesperis), H. schischkinii (Sect. Mediterranea), H. pendula (Sect. Pachycarpos), H. breviscapa, H. kotschyi (Sect. Cvelevia) and H.cappadocica (Sect. Contorta) species need to be placed into different sections according to morphological characters. On the other hand, the phylogenetic order of the sections according to morphological characters and according to molecular data displayed some differences and evolutionary phylogenetic orders of the sections were redesigned. The phylogenetic relations among species were based on the samples H. breviscapa and H. kotschyi which take place in the same section.The accordance of morphological and molecular similarities was noticed for H. breviscapa and H. kotschyi species. Besides this, infraspecific taxonomic situations of H. schischkinii samples havinghairy and glabrous (non-hairy) fruits which show allopatric and sympatric spread were reassessed by RAPD analysis

    Multiple-Resampling Receiver Design for OFDM Over Doppler-Distorted Underwater Acoustic Channels

    Get PDF
    Cataloged from PDF version of article.In this paper, we focus on orthogonal frequency-divisionmultiplexing (OFDM) receiver designs for underwater acoustic (UWA) channels with user- and/or path-specific Doppler scaling distortions. The scenario is motivated by the cooperative communications framework, where distributed transmitter/receiver pairs may experience significantly different Doppler distortions, as well as by the single-user scenarios, where distinct Doppler scaling factors may exist among different propagation paths. The conventional approach of front–end resampling that corrects for common Doppler scalingmay not be appropriatein such scenarios, rendering a post-fast-Fourier-transform (FFT) signal that is contaminated by user- and/or path-specific intercarrier interference. To counteract this problem, we propose a family of front–end receiver structures thatutilizemultiple-resampling (MR)branches,eachmatched to the Doppler scaling factor of a particular user and/or path. Following resampling, FFT modules transform the Doppler-compensated signals into the frequency domain for further processing through linear or nonlinear detection schemes. As part of the overall receiver structure, a gradient–descent approachis also proposed to refine the channel estimates obtained by standard sparse channel estimators. The effectiveness and robustness of the proposed receivers are demonstrated via simulations, as well as emulations based on real data collected during the 2010 Mobile Acoustic Communications Experiment (MACE10, Martha’s Vineyard, MA) and the 2008 Kauai Acomms MURI (KAM08, Kauai, HI) experiment

    Effects of Saccharomyces boulardii on antibiotic induced orocecal transit in rats

    Get PDF
    Clarithromycin is an antibiotic widely used for Helicobacter pylori (H. pylori) eradication and together with amoxicillin and proton pump inhibitors they constitute the first line triple treatment regimen against H. pylori. Diarrhoea is one of the major drawbacks during H. pylori eradication and is majorly attributed to clarithromycin, while Saccharomyces boulardii is a probiotic and is shown to be effective in the treatment of antibiotic associated diarrhoea. We aimed to evaluate the effect of clarithromycin on orocecal transit in rats and to identify whether the supplementation with S. boulardii has a role on orocecal transit index. Adult rats of both sexes were divided into two groups to determine immediate or chronic effects of S. boulardii and clarithromycin on orocecal transit. The first group was given single dose of the test drug, while the second group received the test drugs for one week through orogastric intubation. Both groups were randomly distributed into four subgroups; the placebo group (group A), the S. boulardii group (group B), the clarithromycin group (group C), and the co-administration that is clarithromycin plus S. boulardii group (group D). Rats were given 20 mg kg−1 clarithromycin and 500 mg kg−1S. boulardii. We did not find any difference among the subgroups in group 1, where only single dose of the test drugs was administered. In chronic administration group, that is group 2, significant differences among the subgroups were observed (P=0.004). Post-hoc comparisons of orocecal transit index between group “2A and 2C” and “2C and 2D” were significantly different (P=0.013 and P=0.005, respectively). Our results show that long term clarithromycin administration leads to rapid orocecal transit index and S. boulardii supplementation to clarithromycin can abolish this adverse effect in rats. Those findings suggest the beneficial use of S. boulardii in H. pylori eradication regimens

    Indium selenide: An insight into electronic band structure and surface excitations

    Get PDF
    We have investigated the electronic response of single crystals of indium selenide by means of angle-resolved photoemission spectroscopy, electron energy loss spectroscopy and density functional theory. The loss spectrum of indium selenide shows the direct free exciton at similar to 1.3 eV and several other peaks, which do not exhibit dispersion with the momentum. The joint analysis of the experimental band structure and the density of states indicates that spectral features in the loss function are strictly related to single-particle transitions. These excitations cannot be considered as fully coherent plasmons and they are damped even in the optical limit, i.e. for small momenta. The comparison of the calculated symmetry-projected density of states with electron energy loss spectra enables the assignment of the spectral features to transitions between specific electronic states. Furthermore, the effects of ambient gases on the band structure and on the loss function have been probed

    Advanced endoscopic ultrasound management techniques for preneoplastic pancreatic cystic lesions

    Get PDF
    Pancreatic cystic lesions can be benign, premalignant or malignant. The recent increase in detection and tremendous clinical variability of pancreatic cysts has presented a significant therapeutic challenge to physicians. Mucinous cystic neoplasms are of particular interest given their known malignant potential. This review article provides a brief but comprehensive review of premalignant pancreatic cystic lesions with advanced endoscopic ultrasound (EUS) management approaches. A comprehensive literature search was performed using PubMed, Cochrane, OVID and EMBASE databases. Preneoplastic pancreatic cystic lesions include mucinous cystadenoma and intraductal papillary mucinous neoplasm. The 2012 International Sendai Guidelines guide physicians in their management of pancreatic cystic lesions. Some of the advanced EUS management techniques include ethanol ablation, chemotherapeutic (paclitaxel) ablation, radiofrequency ablation and cryotherapy. In future, EUS-guided injections of drug-eluting beads and neodymium:yttrium aluminum agent laser ablation is predicted to be an integral part of EUS-guided management techniques. In summary, International Sendai Consensus Guidelines should be used to make a decision regarding management of pancreatic cystic lesions. Advanced EUS techniques are proving extremely beneficial in management, especially in those patients who are at high surgical risk

    The Adhesion-GPCR BAI1 Regulates Synaptogenesis by Controlling the Recruitment of the Par3/Tiam1 Polarity Complex to Synaptic Sites

    Get PDF
    Excitatory synapses are polarized structures that primarily reside on dendritic spines in the brain. The small GTPase Rac1 regulates the development and plasticity of synapses and spines by modulating actin dynamics. By restricting the Rac1-guanine nucleotide exchange factor Tiam1 to spines, the polarity protein Par3 promotes synapse development by spatially controlling Rac1 activation. However, the mechanism for recruiting Par3 to spines is unknown. Here, we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a synaptic adhesion GPCR that is required for spinogenesis and synaptogenesis in mice and rats. We show that BAI1 interacts with Par3/Tiam1 and recruits these proteins to synaptic sites. BAI1 knockdown results in Par3/Tiam1 mislocalization and loss of activated Rac1 and filamentous actin from spines. Interestingly, BAI1 also mediates Rac-dependent engulfment in professional phagocytes through its interaction with a different Rac1-guanine nucleotide exchange factor module, ELMO/DOCK180. However, this interaction is dispensable for BAI1’s role in synapse development because a BAI1 mutant that cannot interact with ELMO/DOCK180 rescues spine defects in BAI1-knockdown neurons, whereas a mutant that cannot interact with Par3/Tiam1 rescues neither spine defects nor Par3 localization. Further, overexpression of Tiam1 rescues BAI1 knockdown spine phenotypes. These results indicate that BAI1 plays an important role in synaptogenesis that is mechanistically distinct from its role in phagocytosis. Furthermore, our results provide the first example of a cell surface receptor that targets members of the PAR polarity complex to synapses

    Porcine reproductive and respiratory syndrome virus (PRRSV) infection spreads by cell-to-cell transfer in cultured MARC-145 cells, is dependent on an intact cytoskeleton, and is suppressed by drug-targeting of cell permissiveness to virus infection

    Get PDF
    BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of PRRS, causing widespread chronic infections which are largely uncontrolled by currently available vaccines or other antiviral measures. Cultured monkey kidney (MARC-145) cells provide an important tool for the study of PRRSV replication. For the present study, flow cytometric and fluorescence antibody (FA) analyses of PRRSV infection of cultured MARC-145 cells were carried out in experiments designed to clarify viral dynamics and the mechanism of viral spread. The roles of viral permissiveness and the cytoskeleton in PRRSV infection and transmission were examined in conjunction with antiviral and cytotoxic drugs. RESULTS: Flow cytometric and FA analyses of PRRSV antigen expression revealed distinct primary and secondary phases of MARC-145 cell infection. PRRSV antigen was randomly expressed in a few percent of cells during the primary phase of infection (up to about 20–22 h p.i.), but the logarithmic infection phase (days 2–3 p.i.), was characterized by secondary spread to clusters of infected cells. The formation of secondary clusters of PRRSV-infected cells preceded the development of CPE in MARC-145 cells, and both primary and secondary PRRSV infection were inhibited by colchicine and cytochalasin D, demonstrating a critical role of the cytoskeleton in viral permissiveness as well as cell-to-cell transmission from a subpopulation of cells permissive for free virus to secondary targets. Cellular expression of actin also appeared to correlate with PRRSV resistance, suggesting a second role of the actin cytoskeleton as a potential barrier to cell-to-cell transmission. PRRSV infection and cell-to-cell transmission were efficiently suppressed by interferon-γ (IFN-γ), as well as the more-potent experimental antiviral agent AK-2. CONCLUSION: The results demonstrate two distinct mechanisms of PRRSV infection: primary infection of a relatively small subpopulation of innately PRRSV-permissive cells, and secondary cell-to-cell transmission to contiguous cells which appear non-permissive to free virus. The results also indicate that an intact cytoskeleton is critical for PRRSV infection, and that viral permissiveness is a highly efficient drug target to control PRRSV infection. The data from this experimental system have important implications for the mechanisms of PRRSV persistence and pathology, as well as for a better understanding of arterivirus regulation

    Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity

    Get PDF
    Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD), and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI) subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs) has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases
    corecore