221 research outputs found

    Foraminiferal biodiversity associated with cold-water coral carbonate mounds and open slope of SE Rockall Bank (Irish continental margin-NE Atlantic)

    Get PDF
    Cold-water coral (CWC) ecosystems are hotspots of macro- and microfaunal biodiversity and provide refuge for a wide variety of deep-sea species. We investigated how the abundance and biodiversity of 'live' (Rose Bengal stained) foraminifera varies with, and is related to, the occurrence of CWC on the Rockall Bank (NE Atlantic). Qualitative and quantitative analyses were performed on 21 replicate samples from 8 deep-sea stations, including 4 stations on CWC-covered carbonate mounds at depths of 567-657 m, and 4 stations on the adjacent slope at depths of 469-1958 m where CWC were absent. This sampling strategy enabled us to demonstrate that sediments surrounding the living CWC were characterised by higher foraminiferal abundance and biodiversity than open-slope sediments from the same area. A total of 163 foraminiferal species was identified. The dominant species in CWC sediments were: Spirillina vivipara, Allogromiid sp. 1. Globocassidulina subglobosa, Adercotryma wrighti, Eponides pusillus, Ehrenbergina carinata, Planulina ariminensis, Trochammina inflate and Paratrochammina challenged. Foraminifera were nearly absent in adjacent open slope areas subject to strong tidal currents and characterised by coarse grained deposits. We suggest that CWC create a heterogeneous three-dimensional substrate offering microhabitats to a diverse benthic foraminiferal community

    Trophic structure of cold-water coral communities revealed from the analysis of tissue isotopes and fatty acid composition

    Get PDF
    The trophic structure of cold-water coral reef communities at two contrasting locations, the 800-m deep Belgica Mounds (Irish margin) and the 300-m deep Træna reefs (Norwegian Shelf), was investigated using stable isotope (δ13C and δ15N) and fatty-acid composition analysis. A broad range of specimens, with emphasis on (commercial) fish specie's, and organic matter sources were sampled using a variety of tools. Irrespective of the environmental and geographical setting, the δ15N values indicated that the food web encompasses roughly 1.5 to 3 trophic levels. Mobile echinoderms, i.e. sea urchins and sea stars, had highest δ15N values, indicative of a high trophic position in the food web. The fraction of bacterial fatty acids in reef fauna was generally low (<5%), indicating that enhanced bacterial production in the water column through seafloor seepage of nutrients (‘hydraulic theory’) does not form a significant energy pathway into the food web. The high fraction of algal and essential fatty acids in reef fauna and fish at both locations indicates a close coupling with surface productivity, but the transport mechanism depends on the hydrographic setting. At Træna, Calanus copepods and euphausiids form an additional link between primary production and fish, which is largely absent at Belgica Mounds. At Belgica Mounds, the reef community is primarily supported by phytodetritus, as evidenced by the high contribution of algal fatty acids in faunal tissue and seasonal chlorophyll a deposition and marine snow at the reef. The environmental setting of cold-water coral reefs influences the structure of the associated food web

    A regional benthic fauna assessment method for the Southern North Sea using Margalef diversity and reference value modelling

    Get PDF
    The aims of this study are to develop an optimized method for regional benthic fauna assessment of the Southern North Sea which (a) is sensitive and precise (quantified as the slope and the R2 value of the pressure-impact relationships, respectively) for the anthropogenic pressures bottom fishing and organic enrichment, (b) is suitable for estimating and modelling reference values, (c) is transparent, (d) can be efficiently applied using dedicated software; and to apply this method to benthic data from the Southern North Sea. Margalef diversity appeared to be the best performing benthic index regarding these criteria, even better than several Multi-Metric Indices (MMIs) containing e.g. AMBI (AZTI Marine Biotic Index) and ITI (Infaunal Trophic Index). Therefore, this relatively simple and very practical index, including a new reference value estimation and modelling method, and BENMMI software were selected as a common OSPAR (Oslo Paris convention) method for the benthic fauna assessment of the Southern North Sea. This method was applied to benthic fauna data from the Southern North Sea collected during the period 2010–2015. The results in general show lower normalized Margalef values in coastal areas, and higher normalized Margalef values in deeper offshore areas. The following benthic indices were compared in this study: species richness, Margalef diversity, SNA index, Shannon index, PIE index, AMBI, ITI. For each assessment area, the least disturbed benthic dataset was selected as an adjacent 6 year period with, on average, the highest Margalef diversity values. For these datasets, the reference values were primarily set as the 99th percentile values of the respective indices. This procedure results in the highest stable reference values that are not outliers. In addition, a variable percentile method was developed, in which the percentile value is adjusted to the average bottom fishing pressure (according to data from the International Council for the Exploration of the Sea, ICES) in the period 2009–2013. The adjusted percentile values were set by expert judgement, at 75th (low fishing pressure), 95th (medium fishing pressure) and 99th (high fishing pressure) percentile. The estimated reference values for Margalef diversity correlate quite well with the median depth of the assessment areas using a sigmoid model (pseudo-R2 = 0.86). This relationship between depth and Margalef diversity was used to estimate reference values in case an assessment area had insufficient benthic data .For testing the effects of bottom fishing pressure, normalized index values (NIV; index value divided by reference value) were used. The rationale for using NIVs is the assumption that, although a certain level of bottom fishing pressure will have a larger absolute effect on more biodiverse benthic communities in deeper waters than on more robust and less biodiverse coastal benthic communities, the relative effects (tested using NIVs) are comparable. A clear exponentially decreasing relationship (R2 = 0.26–0.27, p 2 cm, respectively) and normalized Margalef diversity values, with an asymptotic normalized Margalef value of 0.45 at a subsurface fishing activity >2.3 sweeps/year. This asymptotic value is predominantly found in coastal waters, and probably shows that the naturally more robust coastal benthic communities have been transformed into resilient benthic communities, which rapidly recover from increasing fishing pressure

    Long-term Observations Reveal Environmental Conditions and Food Supply Mechanisms at an Arctic Deep-Sea Sponge Ground

    Get PDF
    Deep-sea sponge grounds are hotspots of benthic biomass and diversity. To date, very limited data exist on the range of environmental conditions in areas containing deep-sea sponge grounds and which factors are driving their distribution and sustenance. We investigated oceanographic conditions at a deep-sea sponge ground located on an Arctic Mid-Ocean Ridge seamount. Hydrodynamic measurements were performed along Conductivity-Temperature-Depth transects, and a lander was deployed within the sponge ground that recorded near-bottom physical properties as well as vertical fluxes of organic matter over an annual cycle. The data demonstrate that the sponge ground is found at water temperatures of −0.5°C to 1°C and is situated at the interface between two water masses at only 0.7° equatorward of the turning point latitude of semi-diurnal lunar internal tides. Internal waves supported by vertical density stratification interact with the seamount topography and produce turbulent mixing as well as resuspension of organic matter with temporarily very high current speeds up to 0.72 m s−1. The vertical movement of the water column delivers food and nutrients from water layers above and below toward the sponge ground. Highest organic carbon flux was observed during the summer phytoplankton bloom period, providing fresh organic matter from the surface. The flux of fresh organic matter is unlikely to sustain the carbon demand of this ecosystem. Therefore, the availability of bacteria, nutrients, and dissolved and particulate matter, delivered by tidally forced internal wave turbulence and transport by horizontal mean flows, likely plays an important role in meeting ecosystem-level food requirements

    The North Sea Benthos Project: planning, management and objectives

    Get PDF
    The ICES Benthos Ecology Working Group is integrating recent macrobenthic infaunal data (1999-2001) available from various sources, including national monitoring surveys, in North Sea soft bottom sediments. lt is expected to cover most of the North Sea. The main goal is an overall comparison with the North Sea Benthos Survey data of 1986, in order to determine whether there have been any significant changes and, if so, what may be the causal influences (e.g., climate change, fishing impacts). The work will contribute valuable information on several other topics such as habitat classification and the distribution of endangered species. Therefore, in addition to physico-chemical measurements of sediments samples alongside the benthic fauna, information on water depths, temperature, water quality and salinity will be incorporated in the analysis of species and community distributions. Also, we will use existing ecological and hydrographical models for currents, bottom shear stress and carbon input, along with information on the distribution of habitat types, to explain the observed distribution patterns. At the ASC, an overview of the data available will be presented as well as the anticipated outcomes, and the first steps taken to deal with taxonomic differences and other issues affecting the capability to integrate submitted information

    Trends in biomass, density and diversity of North Sea macrofauna

    Get PDF
    Total biomass and biomass of large taxonomic groups (polychaetes, molluscs, crustaceans, echinoderms) and species diversity of the macrofauna were determined for almost 200 North Sea stations sampled synoptically by seven vessels during Spring 1986 and for 120 additional stations sampled in earlier years by the Marine Laboratory in Aberdeen. There exists a clear and significant decreasing trend in biomass with latitude, both in total biomass and for the different taxonomic groups. Apart from latitude, sediment composition and chlorophyll a content of the sediment also infuence total biomass and biomass of most groups significantly. Biomass increases consistently in finer sediments and sediments with a higher chlorophyll a content. The same trends are found for the results within laboratories. Some interaction exists, indicating weak laboratory and zonal effects. Diversity, as measured by Hill's diversity index N1 = (exp H′) shows a clear and significant trend with latitude. Towards the north of the North Sea diversity increases considerably. The trend is also found for laboratories separately and is everywhere equally strong. Also longitude and depth show an effect on diversity. Sediment variables have no clear influence on diversity. Other diversity measures show the same trend but are more variable than N1,. Total density tends to increase towards the north, but sediment related variables have a larger influence. Mean individual weight becomes considerably smaller towards the northern part of the North Sea

    The important role of sponges in carbon and nitrogen cycling in a deep-sea biological hotspot

    Get PDF
    Deep-sea sponge grounds are hotspots of biodiversity, harbouring thriving ecosystems in the otherwise barren deep sea. It remains unknown how these sponge grounds survive in this food-limited environment. Here, we unravel how sponges and their associated fauna sustain themselves by identifying their food sources and food-web interactions using bulk and compound-specific stable isotope analysis of amino and fatty acids. We found that sponges with a high microbial abundance had an isotopic composition resembling organisms at the base of the food web, suggesting that they are able to use dissolved resources that are generally inaccessible to animals. In contrast, low microbial abundance sponges had a bulk isotopic composition that resembles a predator at the top of a food web, which appears to be the result of very efficient recycling pathways that are so far unknown. The compound-specific-isotope analysis, however, positioned low-microbial abundance sponges with other filter-feeding fauna. Furthermore, fatty-acid analysis confirmed transfer of sponge-derived organic material to the otherwise food-limited associated fauna. Through this subsidy, sponges are key to the sustenance of thriving deep-sea ecosystems and might have, due to their ubiquitous abundance, a global impact on biogeochemical cycles. Read the free Plain Language Summary for this article on the Journal blog

    Role of deep sponge grounds in the Mediterranean Sea: a case study in southern Italy

    Get PDF
    The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 +/- 1.1 specimens m(-2) (approximately 230 gWW m(-2) of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 +/- 0.7 specimens m(-2), approximately 315 gWW m(-2) of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m(-2)). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic-pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 +/- 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter
    corecore