92 research outputs found

    Atomic-scale confinement of optical fields

    Full text link
    In the presence of matter there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically-defined gaps reaching below 0.5 nm. The existence of atomically-confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically-resolved spectroscopic imaging, deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the realization of novel quantum-optical devices

    Mode imaging and selection in strongly coupled nanoantennas

    Full text link
    The number of eigenmodes in plasmonic nanostructures increases with complexity due to mode hybridization, raising the need for efficient mode characterization and selection. Here we experimentally demonstrate direct imaging and selective excitation of the bonding and antibonding plasmon mode in symmetric dipole nanoantennas using confocal two-photon photoluminescence mapping. Excitation of a high-quality-factor antibonding resonance manifests itself as a two-lobed pattern instead of the single spot observed for the broad bonding resonance, in accordance with numerical simulations. The two-lobed pattern is observed due to the fact that excitation of the antibonding mode is forbidden for symmetric excitation at the feedgap, while concomitantly the mode energy splitting is large enough to suppress excitation of the bonding mode. The controlled excitation of modes in strongly coupled plasmonic nanostructures is mandatory for efficient sensors, in coherent control as well as for implementing well-defined functionalities in complex plasmonic devices.Comment: 11 pages, 5 figures, 1 supplementary informatio

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    Phenotypic Characterisation of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically with Pulmonary Arterial Hypertension

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease and pulmonary capillary haemangiomatosis (PVOD/PCH). Here, we determined the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole genome sequencing was performed on DNA from patients with idiopathic and heritable PAH, as well as PVOD/PCH recruited to the NIHR BioResource - Rare Diseases Study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of < 1:10,000 in control data sets and predicted to be deleterious (by CADD, PolyPhen-2 and SIFT predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred and sixty-four patients with idiopathic or heritable PAH and 16 with PVOD/PCH were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of PVOD/PCH. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (KCO: 33 [IQR: 30 - 35] % predicted) and younger age at diagnosis (29 [23 - 38] years) as well as more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest, compared to PAH patients without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. PAH patients with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as idiopathic and heritable PAH. These patients cannot be identified reliably by CT, but a low KCO and a young age of diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation.The National Institute of Health Research (NIHR) BioResource for Rare Diseases provided funding for sequencing and analysis. The study was supported by a British Heart Foundation Special Project Grant and a Medical Research Council (UK) Experimental Challenge Award

    A polarizing situation: Taking an in-plane perspective for next-generation near-field studies

    Full text link
    • …
    corecore