26 research outputs found

    Reproducibility of a peripheral quantitative computed tomography scan protocol to measure the material properties of the second metatarsal

    Get PDF
    Background: Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Methods. Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec-1. The reference line was positioned at the most distal portion of the 2nd metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Results: Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI - mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI - mid shaft (ICC 0.99; CV% 3.2). Conclusions: The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2 nd metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures

    Thermal gelation modeling of a pluronic-alginate blend following coronary angioplasty

    Get PDF
    To overcome the complications connected to the treatment of coronary atherosclerosis by means of percutaneous transluminal angioplasty followed by stent implantation, the in situ release of antiproliferative nucleic acid based drugs (NABD) seems a promising approach. For their fragile nature, NABD cannot be released from drug eluting stents but they need to be embedded in a soft gel coating the coronary wall (endoluminal gel paving). This article deals with the thermal fate, once in the catheter, of a polymer blend composed by pluronic, giving rise to a soft gel in water upon temperature rise, and alginate, a natural polysaccharide giving origin to a strong gel in the presence of divalent cations. Simulations reveal that while the formation of a pregel is rapidly achieved, the formation of a mature gel takes a much longer time with respect to the residence time of the polymer blend inside the catheter. \ua9 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48539

    Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice.

    No full text
    Homeotherms maintain a stable internal body temperature despite changing environments. During energy deficiency, some species can cease to defend their body temperature and enter a hypothermic and hypometabolic state known as torpor. Recent advances have revealed the medial preoptic area (MPA) as a key site for the regulation of torpor in mice. The MPA is estrogen-sensitive and estrogens also have potent effects on both temperature and metabolism. Here, we demonstrate that estrogen-sensitive neurons in the MPA can coordinate hypothermia and hypometabolism in mice. Selectively activating estrogen-sensitive MPA neurons was sufficient to drive a coordinated depression of metabolic rate and body temperature similar to torpor, as measured by body temperature, physical activity, indirect calorimetry, heart rate, and brain activity. Inducing torpor with a prolonged fast revealed larger and more variable calcium transients from estrogen-sensitive MPA neurons during bouts of hypothermia. Finally, whereas selective ablation of estrogen-sensitive MPA neurons demonstrated that these neurons are required for the full expression of fasting-induced torpor in both female and male mice, their effects on thermoregulation and torpor bout initiation exhibit differences across sex. Together, these findings suggest a role for estrogen-sensitive MPA neurons in directing the thermoregulatory and metabolic responses to energy deficiency
    corecore