55 research outputs found

    Photosensitization and mechanism of cytotoxicity induced by the use of ALA derivatives in photodynamic therapy

    Get PDF
    The use of more lipophilic derivatives of 5-aminolevulinic acid (ALA) is expected to have better diffusing properties, and after conversion into the parent ALA, to reach a higher protoporphyrin IX (PPIX) formation rate, thus improving the efficacy of topical photodynamic therapy (PDT). Here we have analysed the behaviour of 3 ALA derivatives (ALA methyl-ester, hexyl ester and a 2-sided derivative) regarding PPIX formation, efficiency in photosensitizing cells and mechanism of cellular death. The maximum amount of porphyrins synthesized from 0.6 mM ALA was 47 ± 8 ng/105 cells. The same amount was formed by a concentration 60-fold lower of hexyl-ALA and 2-fold higher of methyl-ALA. The 2-sided derivative failed to produce PPIX accumulation. Applying a 0.6 J cm−2 light dose, cell viability decreased to 50%. With the 1.5 J cm−2 light dose, less than 20% of the cells survive, and higher light doses produced nearly total cell killing. Comparing the PPIX production and the induced phototoxicity, the more the amount of porphyrins, the greater the cellular killing, and PPIX formed from either ALA or ALA-esters equally sensitize the cells to photoinactivation. ALA-PDT treated cells exhibited features of apoptosis, independently on the pro-photosensitizer employed. ALA-PDT can be improved with the use of ALA derivatives, reducing the amount of ALA necessary to induce efficient photosensitization. ©2001 Cancer Research Campaign http://www.bjcancer.co

    Photodynamic therapy of cutaneous T-cell lymphoma cell lines mediated by 5-aminolevulinic acid and derivatives

    Get PDF
    The delta-amino acid 5-aminolevulinic acid (ALA), is the precursor of the endogenous photosensitiser Protoporphyrin IX (PpIX), and is currently approved for Photodynamic Therapy (PDT) of certain superficial cancers. However, ALA-PDT is not very effective in diseases in which T-cells play a significant role. Cutaneous T-cell lymphomas (CTCL) is a group of non-Hodgkin malignant diseases, which includes mycosis fungoides (MF) and Sézary syndrome (SS). In previous work, we have designed new ALA esters synthesised by three-component Passerini reactions, and some of them showed higher performance as compared to ALA. This work aimed to determine the efficacy as pro-photosensitisers of five new ALA esters of 2-hydroxy-N-arylacetamides (1f, 1 g, 1 h, 1i and 1 k) of higher lipophilicity than ALA in Myla cells of MF and HuT-78 cells of SS. We have also tested its effectiveness against ALA and the already marketed ALA methyl ester (Me-ALA) and ALA hexyl ester (He-ALA). Both cell Myla and SS cells were effectively and equally photoinactivated by ALA-PDT. Besides, the concentration of ALA required to induce half the maximal porphyrin synthesis was 209 μM for Myla and 169 μM for HuT-78 cells. As a criterion of efficacy, we calculated the concentration of the ALA derivatives necessary to induce half the plateau porphyrin values obtained from ALA. These values were achieved at concentrations 4 and 12 times lower compared to ALA, according to the derivative used. For He-ALA, concentrations were 24 to 25 times lower than required for ALA for inducing comparable porphyrin synthesis in both CTCL cells. The light doses for inducing 50% of cell death (LD50) for He-ALA, 1f, 1 g, 1 h and 1i were around 18 and 25 J/cm2 for Myla and HuT-78 cells respectively, after exposure to 0.05 mM concentrations of the compounds. On the other hand, the LD50s for the compound 1 k were 40 and 57 J/cm2 for Myla and HuT-78, respectively. In contrast, 0.05 mM of ALA and Me-ALA did not provoke photokilling since the concentration employed was far below the porphyrin saturation point for these compounds. Our results suggest the potential use of ALA derivatives for topical application in PDT treatment of MF and extracorporeal PDT for the depletion of activated T-cells in SS

    Treatment of Pyonephritis Complicated by Septic Shock Using Extracorporeal Device Polymyxin B-Hemoperfusion

    Get PDF
    Direct hemoperfusion using polymyxin B-immobilized fiber (PMX-DHP) is an established treatment method for septic shock caused by Gram-negative infections. We report one instance in which PMX-DHP therapy has been used successfully in a 33-year-old woman with septic shock from urosepsis. Although there is lack of recommendations in latest Surviving Sepsis Campaign Guidelines, evidence of PMX-DHP efficacy in this subset of patients is growing

    The use of dipeptide derivatives of 5-aminolaevulinic acid promotes their entry to tumor cells and improves tumor selectivity of photodynamic therapy

    Get PDF
    The use of endogenous protoporphyrin IX generated after administration of 5-aminolaevulinic acid (ALA) has led to many applications in photodynamic therapy (PDT). However, the bioavailability of ALA is limited by its hydrophilic properties and limited cell uptake. A promising approach to optimize the efficacy of ALA-PDT is to deliver ALA in the form of prodrugs to mask its hydrophilic nature. The aim of this work was to evaluate the potential of two ALA dipeptide derivatives, N-acetyl terminated leucinyl-ALA methyl ester (Ac-Leu-ALA-Me) and phenylalanyl-ALA methyl ester (Ac-Phe-ALA-Me), for their use in PDT of cancer, by investigating the generation of protoporphyrin IX in an oncogenic cell line (PAM212-Ras), and in a subcutaneous tumor model. In our in vitro studies, both derivatives were more effective than ALA in PDT treatment, at inducing the same protoporphyrin IX levels but at 50- to 100-fold lower concentrations, with the phenylalanyl derivative being the most effective. The efficient release of ALA from Ac-Phe-ALA-Me appears to be consistent with the reported substrate and inhibitor preferences of acylpeptide hydrolase. In vivo studies revealed that topical application of the peptide prodrug Ac-Phe-ALA-Me gave greater selectivity than with ALA itself, and induced tumor photodamage, whereas systemic administration improved ALA-induced porphyrin generation in terms of equivalent doses administered, without induction of toxic effects. Our data support the possibility of using particularly Ac-Phe-ALA-Me both for topical treatment of basal cell carcinomas and for systemic administration. Further chemical fine-tuning of this prodrug template should yield additional compounds for enhanced ALA-PDT with potential for translation to the clinic

    Apoptotic cell death induced by dendritic derivatives of aminolevulinic acid in endothelial and foam cells co-cultures

    Get PDF
    Photodynamic therapy (PDT) is an effective procedure for the treatment of lesions diseases based on the selectivity of a photosensitising compound with the ability to accumulate in the target cell. Atherosclerotic plaque is a suitable target for PDT because of the preferential accumulation of photosensitisers in atherosclerotic plaques. Dendrimers are hyperbranched polymers conjugated to drugs. The dendrimers of ALA hold ester bonds that inside the cells are cleaved and release ALA, yielding PpIX production. The dendrimer 6m-ALA was chosen to perform this study since in previous studies it induced the highest porphyrin macrophage: endothelial cell ratio (Rodriguez et al. in Photochem Photobiol Sci 14:1617–1627, 2015). We transformed Raw 264.7 macrophages to foam cells by exposure to oxidised LDLs, and we employed a co-culture model of HMEC-1 endothelial cells and foam cells to study the affinity of ALA dendrimers for the foam cells. In this work it was proposed an in vitro model of atheromatous plaque, the aim was to study the selectivity of an ALA dendrimer for the foam cells as compared to the endothelial cells in a co-culture system and the type of cell death triggered by the photodynamic treatment. The ALA dendrimer 6m-ALA showed selectivity PDT response for foam cells against endothelial cells. A light dose of 1 J/cm² eliminate foam cells, whereas less than 50% of HMEC-1 is killed, and apoptosis cell death is involved in this process, and no necrosis is present. We propose the use of ALA dendrimers as pro-photosensitisers to be employed in photoangioplasty to aid in the treatment of obstructive cardiovascular diseases, and these molecules can also be employed as a theranostic agent.Facultad de Ciencias MédicasInstituto de Investigaciones Bioquímicas de La Plat

    Protoporphyrin IX enhancement by 5-aminolaevulinic acid peptide derivatives and the effect of RNA silencing on intracellular metabolism

    Get PDF
    Intracellular generation of the photosensitiser, protoporphyrin IX, from a series of dipeptide derivatives of the haem precursor, 5-aminolaevulinic acid (ALA), was investigated in transformed PAM212 murine keratinocytes, together with studies of their intracellular metabolism. Porphyrin production was substantially increased compared with equimolar ALA using N-acetyl terminated phenylalanyl, leucinyl and methionyl ALA methyl ester derivatives in the following order: Ac-L-phenylalanyl-ALA-Me, Ac-L-methionyl-ALA-Me and Ac-L-leucinyl-ALA-Me. The enhanced porphyrin production was in good correlation with improved photocytotoxicity, with no intrinsic dark toxicity apparent. However, phenylalanyl derivatives without the acetyl/acyl group at the N terminus induced significantly less porphyrin, and the replacement of the acetyl group by a benzyloxycarbonyl group resulted in no porphyrin production. Porphyrin production was reduced in the presence of class-specific protease inhibitors, namely serine protease inhibitors. Using siRNA knockdown of acylpeptide hydrolase (ACPH) protein expression, we showed the involvement of ACPH, a member of the prolyl oligopeptidase family of serine peptidases, in the hydrolytic cleavage of ALA from the peptide derivatives. In conclusion, ALA peptide derivatives are capable of delivering ALA efficiently to cells and enhancing porphyrin synthesis and photocytotoxicity; however, the N-terminus state, whether free or substituted, plays an important role in determining the biological efficacy of ALA peptide derivatives
    • …
    corecore