122 research outputs found

    Affine T-varieties of complexity one and locally nilpotent derivations

    Full text link
    Let X=spec A be a normal affine variety over an algebraically closed field k of characteristic 0 endowed with an effective action of a torus T of dimension n. Let also D be a homogeneous locally nilpotent derivation on the normal affine Z^n-graded domain A, so that D generates a k_+-action on X that is normalized by the T-action. We provide a complete classification of pairs (X,D) in two cases: for toric varieties (n=\dim X) and in the case where n=\dim X-1. This generalizes previously known results for surfaces due to Flenner and Zaidenberg. As an application we compute the homogeneous Makar-Limanov invariant of such varieties. In particular we exhibit a family of non-rational varieties with trivial Makar-Limanov invariant.Comment: 31 pages. Minor changes in the structure. Fixed some typo

    Restricted infinitesimal deformations of restricted simple Lie algebras

    Full text link
    We compute the restricted infinitesimal deformations of the restricted simple Lie algebras over an algebraically closed field of characteristic different from 2 and 3.Comment: 15 pages; final version, to appear in Journal of Algebra and Its Application

    Formal Hecke algebras and algebraic oriented cohomology theories

    Full text link
    In the present paper we generalize the construction of the nil Hecke ring of Kostant-Kumar to the context of an arbitrary algebraic oriented cohomology theory of Levine-Morel and Panin-Smirnov, e.g. to Chow groups, Grothendieck's K_0, connective K-theory, elliptic cohomology, and algebraic cobordism. The resulting object, which we call a formal (affine) Demazure algebra, is parameterized by a one-dimensional commutative formal group law and has the following important property: specialization to the additive and multiplicative periodic formal group laws yields completions of the nil Hecke and the 0-Hecke rings respectively. We also introduce a deformed version of the formal (affine) Demazure algebra, which we call a formal (affine) Hecke algebra. We show that the specialization of the formal (affine) Hecke algebra to the additive and multiplicative periodic formal group laws gives completions of the degenerate (affine) Hecke algebra and the usual (affine) Hecke algebra respectively. We show that all formal affine Demazure algebras (and all formal affine Hecke algebras) become isomorphic over certain coefficient rings, proving an analogue of a result of Lusztig.Comment: 28 pages. v2: Some results strengthened and references added. v3: Minor corrections, section numbering changed to match published version. v4: Sign errors in Proposition 6.8(d) corrected. This version incorporates an erratum to the published versio

    Cohomology of the minimal nilpotent orbit

    Full text link
    We compute the integral cohomology of the minimal non-trivial nilpotent orbit in a complex simple (or quasi-simple) Lie algebra. We find by a uniform approach that the middle cohomology group is isomorphic to the fundamental group of the sub-root system generated by the long simple roots. The modulo \ell reduction of the Springer correspondent representation involves the sign representation exactly when \ell divides the order of this cohomology group. The primes dividing the torsion of the rest of the cohomology are bad primes.Comment: 29 pages, v2 : Leray-Serre spectral sequence replaced by Gysin sequence only, corrected typo

    A differential method for bounding the ground state energy

    Get PDF
    For a wide class of Hamiltonians, a novel method to obtain lower and upper bounds for the lowest energy is presented. Unlike perturbative or variational techniques, this method does not involve the computation of any integral (a normalisation factor or a matrix element). It just requires the determination of the absolute minimum and maximum in the whole configuration space of the local energy associated with a normalisable trial function (the calculation of the norm is not needed). After a general introduction, the method is applied to three non-integrable systems: the asymmetric annular billiard, the many-body spinless Coulombian problem, the hydrogen atom in a constant and uniform magnetic field. Being more sensitive than the variational methods to any local perturbation of the trial function, this method can used to systematically improve the energy bounds with a local skilled analysis; an algorithm relying on this method can therefore be constructed and an explicit example for a one-dimensional problem is given.Comment: Accepted for publication in Journal of Physics

    Phase transitions and configuration space topology

    Full text link
    Equilibrium phase transitions may be defined as nonanalytic points of thermodynamic functions, e.g., of the canonical free energy. Given a certain physical system, it is of interest to understand which properties of the system account for the presence of a phase transition, and an understanding of these properties may lead to a deeper understanding of the physical phenomenon. One possible approach of this issue, reviewed and discussed in the present paper, is the study of topology changes in configuration space which, remarkably, are found to be related to equilibrium phase transitions in classical statistical mechanical systems. For the study of configuration space topology, one considers the subsets M_v, consisting of all points from configuration space with a potential energy per particle equal to or less than a given v. For finite systems, topology changes of M_v are intimately related to nonanalytic points of the microcanonical entropy (which, as a surprise to many, do exist). In the thermodynamic limit, a more complex relation between nonanalytic points of thermodynamic functions (i.e., phase transitions) and topology changes is observed. For some class of short-range systems, a topology change of the M_v at v=v_t was proved to be necessary for a phase transition to take place at a potential energy v_t. In contrast, phase transitions in systems with long-range interactions or in systems with non-confining potentials need not be accompanied by such a topology change. Instead, for such systems the nonanalytic point in a thermodynamic function is found to have some maximization procedure at its origin. These results may foster insight into the mechanisms which lead to the occurrence of a phase transition, and thus may help to explore the origin of this physical phenomenon.Comment: 22 pages, 6 figure

    Complete intersections: Moduli, Torelli, and good reduction

    Get PDF
    We study the arithmetic of complete intersections in projective space over number fields. Our main results include arithmetic Torelli theorems and versions of the Shafarevich conjecture, as proved for curves and abelian varieties by Faltings. For example, we prove an analogue of the Shafarevich conjecture for cubic and quartic threefolds and intersections of two quadrics.Comment: 37 pages. Typo's fixed. Expanded Section 2.

    Schubert varieties and generalizations

    Get PDF
    This contribution reviews the main results on Schubert varieties and their generalizations It covers more or less the material of the lectures at the Seminar These were partly expository introducing material needed by other lecturers In particular Section reviews classical material used in several of the other contribution

    A proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields

    Get PDF
    Let R be a regular local ring, containing an infinite field. Let G be a reductive group scheme over R. We prove that a principal G-bundle over R is trivial, if it is trivial over the fraction field of R.Comment: Section "Formal loops and affine Grassmannians" is removed as this is now covered in arXiv:1308.3078. Exposition is improved and slightly restructured. Some minor correction
    corecore