research

Cohomology of the minimal nilpotent orbit

Abstract

We compute the integral cohomology of the minimal non-trivial nilpotent orbit in a complex simple (or quasi-simple) Lie algebra. We find by a uniform approach that the middle cohomology group is isomorphic to the fundamental group of the sub-root system generated by the long simple roots. The modulo \ell reduction of the Springer correspondent representation involves the sign representation exactly when \ell divides the order of this cohomology group. The primes dividing the torsion of the rest of the cohomology are bad primes.Comment: 29 pages, v2 : Leray-Serre spectral sequence replaced by Gysin sequence only, corrected typo

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/02/2019