Let X=spec A be a normal affine variety over an algebraically closed field k
of characteristic 0 endowed with an effective action of a torus T of dimension
n. Let also D be a homogeneous locally nilpotent derivation on the normal
affine Z^n-graded domain A, so that D generates a k_+-action on X that is
normalized by the T-action. We provide a complete classification of pairs (X,D)
in two cases: for toric varieties (n=\dim X) and in the case where n=\dim X-1.
This generalizes previously known results for surfaces due to Flenner and
Zaidenberg. As an application we compute the homogeneous Makar-Limanov
invariant of such varieties. In particular we exhibit a family of non-rational
varieties with trivial Makar-Limanov invariant.Comment: 31 pages. Minor changes in the structure. Fixed some typo