706 research outputs found

    Estimating offsets for avian displacement effects of anthropogenic impacts

    Get PDF
    Biodiversity offsetting, or compensatory mitigation, is increasingly being used in temperate grassland ecosystems to compensate for unavoidable environmental damage from anthropogenic developments such as transportation infrastructure, urbanization, and energy development. Pursuit of energy independence in the United States will expand domestic energy production. Concurrent with this increased growth is increased disruption to wildlife habitats, including avian displacement from suitable breeding habitat. Recent studies at energy-extraction and energy-generation facilities have provided evidence for behavioral avoidance and thus reduced use of habitat by breeding waterfowl and grassland birds in the vicinity of energy infrastructure. To quantify and compensate for this loss in value of avian breeding habitat, it is necessary to determine a biologically based currency so that the sufficiency of offsets in terms of biological equivalent value can be obtained. We describe a method for quantifying the amount of habitat needed to provide equivalent biological value for avifauna displaced by energy and transportation infrastructure, based on the ability to define five metrics: impact distance, impact area, pre-impact density, percent displacement, and offset density. We calculate percent displacement values for breeding waterfowl and grassland birds and demonstrate the applicability of our avian-impact offset method using examples for wind and oil infrastructure. We also apply our method to an example in which the biological value of the offset habitat is similar to the impacted habitat, based on similarity in habitat type (e.g., native prairie), geographical location, land use, and landscape composition, as well as to an example in which the biological value of the offset habitat is dissimilar to the impacted habitat. We provide a worksheet that informs potential users how to apply our method to their specific developments and a framework for developing decision-support tools aimed at achieving landscape-level conservation goals

    The UA9 experimental layout

    Full text link
    The UA9 experimental equipment was installed in the CERN-SPS in March '09 with the aim of investigating crystal assisted collimation in coasting mode. Its basic layout comprises silicon bent crystals acting as primary collimators mounted inside two vacuum vessels. A movable 60 cm long block of tungsten located downstream at about 90 degrees phase advance intercepts the deflected beam. Scintillators, Gas Electron Multiplier chambers and other beam loss monitors measure nuclear loss rates induced by the interaction of the beam halo in the crystal. Roman pots are installed in the path of the deflected particles and are equipped with a Medipix detector to reconstruct the transverse distribution of the impinging beam. Finally UA9 takes advantage of an LHC-collimator prototype installed close to the Roman pot to help in setting the beam conditions and to analyze the efficiency to deflect the beam. This paper describes in details the hardware installed to study the crystal collimation during 2010.Comment: 15pages, 11 figure, submitted to JINS

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    The roles and values of wild foods in agricultural systems

    Get PDF
    Almost every ecosystem has been amended so that plants and animals can be used as food, fibre, fodder, medicines, traps and weapons. Historically, wild plants and animals were sole dietary components for hunter–gatherer and forager cultures. Today, they remain key to many agricultural communities. The mean use of wild foods by agricultural and forager communities in 22 countries of Asia and Africa (36 studies) is 90–100 species per location. Aggregate country estimates can reach 300–800 species (e.g. India, Ethiopia, Kenya). The mean use of wild species is 120 per community for indigenous communities in both industrialized and developing countries. Many of these wild foods are actively managed, suggesting there is a false dichotomy around ideas of the agricultural and the wild: hunter–gatherers and foragers farm and manage their environments, and cultivators use many wild plants and animals. Yet, provision of and access to these sources of food may be declining as natural habitats come under increasing pressure from development, conservation-exclusions and agricultural expansion. Despite their value, wild foods are excluded from official statistics on economic values of natural resources. It is clear that wild plants and animals continue to form a significant proportion of the global food basket, and while a variety of social and ecological drivers are acting to reduce wild food use, their importance may be set to grow as pressures on agricultural productivity increase.</jats:p

    Frovatriptan versus zolmitriptan for the acute treatment of migraine: a double-blind, randomized, multicenter, Italian study

    Get PDF
    The objective of this study is to assess patients’ satisfaction with migraine treatment with frovatriptan (F) or zolmitriptan (Z), by preference questionnaire. 133 subjects with a history of migraine with or without aura (IHS criteria) were randomized to F 2.5 mg or Z 2.5 mg. The study had a multicenter, randomized, double-blind, cross-over design, with each of the two treatment periods lasting no more than 3 months. At the end of the study, patients were asked to assign preference to one of the treatments (primary endpoint). The number of pain-free (PF) and pain-relief (PR) episodes at 2 h, and number of recurrent and sustained pain-free (SPF) episodes within 48 h were the secondary study endpoints. Seventy-seven percent of patients expressed a preference. Average score of preference was 2.9 ± 1.3 (F) versus 3.0 ± 1.3 (Z; p = NS). Rate of PF episodes at 2 h was 26% with F and 31% with Z (p = NS). PR episodes at 2 h were 57% for F and 58% for Z (p = NS). Rate of recurrence was 21 (F) and 24% (Z; p = NS). Time to recurrence within 48 h was better for F especially between 4 and 16 h (p < 0.05). SPF episodes were 18 (F) versus 22% (Z; p = NS). Drug-related adverse events were significantly (p < 0.05) less under F (3 vs. 10). In conclusion, our study suggests that F has a similar efficacy of Z, with some advantage as regards tolerability and recurrence

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
    • 

    corecore