8 research outputs found

    Identification and potential origin of invasive clawed frogs Xenopus (Anura: Pipidae) in Sicily based on mitochondrial and nuclear DNA

    No full text
    African clawed frogs of the widespread polytypic species Xenopus laevis Daudin, 1802 (ranging large parts of sub-Saharan Africa) have been spreading since the 1940s, and have established reproductive populations in Europe, Asia and the Americas, where they can have negative impact as competitors of native amphibians and as disease vectors for chytridomycosis or ranaviruses. Here we use two mitochondrial (cytochrome b, 16S rDNA) and one nuclear (RAG 1: Recombination Associated Gene 1) DNA markers to infer the potential origin of invasive clawed frogs from Sicily that represent the largest invasive population in Europe. Identical mtDNA haplotypes match with those of Xenopus laevis, and Sicilian clawed frogs very probably belong to a lineage from the Cape Region of South Africa, most likely originating from a laboratory stock. Nuclear data support this conclusion. Identical mtDNA sequences (cyt b, 16S) of frogs sampled across their range in Sicily suggest the occurrence of a single source population and a potential bottleneck at their release, but faster evolving multilocus nuclear data (microsatellites, SNPs) on the population genetics would be important in the future to better support this hypothesi

    Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis

    Get PDF
    International audienceBy altering or eliminating delicate ecological relationships, non-indigenous species are con- sidered a major threat to biodiversity, as well as a driver of environmental change. Global cli- mate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were com- puted based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algo- rithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differ- ences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a conti- nental scale, both SDMs predict decreasing potential distributions in the species’ native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain
    corecore