463 research outputs found

    Application of High Order Acoustic Finite Elements to Transmission Losses and Enclosure Problems

    Get PDF
    A family of acoustic finite elements was developed based on C continuity (acoustic pressure being the nodal variable) and the no-flow condition. The family include triangular, quadrilateral and hexahedral isoparametric elements with linear quadratic and cubic variation in modelling and distortion. Of greatest use in problems with irregular boundaries are the cubic isoparametric elements: the 32 node hexahedral element for three-dimensional systems; and the twelve node quadrilateral and ten node triangular elements for two-dimensional/axisymmetric applications. These elements were applied to problems involving cavity resonances, transmission loss in silencers and the study of end effects, using a Floating Point Systems 164 attached array processor accessed through an Amdahl 5860 mainframe. The elements are presently being used to study the end effects associated with duct terminations within finite enclosures. The transmission losses with various silencers and sidebranches in ducts is also being studied using the same elements

    Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment

    Get PDF
    This review explores the use of microalgae for nutrient removal in municipal wastewater treatment, considering recent improvements in the understanding of removal mechanisms and developments of both suspended and non-suspended systems. Nutrient removal is associated to both direct and indirect uptake, with the former associated to the biomass concentration and growth environment (reactor). Importantly, direct uptake is influenced by the Nitrogen:Phosphorus content in both the cells and the surrounding wastewater, with opposite trends observed for N and P. Comparison of suspended and non-suspended systems revealed that whilst all were capable of achieving high levels of nutrient removal, only non-suspended immobilized systems could do so with reduced hydraulic retention times of less than 1 day. As microalgae are photosynthetic organisms, the metabolic processes associated with nutrient assimilation are driven by light. Optimization of light delivery remains a key area of development with examples of improved mixing in suspended systems and the use of pulsating lights to enhance light utilization and reduce costs. Recent data provide increased confidence in the use of microalgae for nutrient removal in municipal wastewater treatment, enabling effluent discharges below 1 mg L−1 to be met whilst generating added value in terms of bioproducts for energy production or nutrient recovery. Ultimately, the review suggests that future research should focus on non-suspended systems and the determination of the added value potential. In so doing, it is predicted that microalgae systems will be significant in the delivery of the circular economy

    The tyrosine phosphatase DEP-1 induces cytoskeletal rearrangements, aberrant cell-substratum interactions and a reduction in cell proliferation

    Get PDF
    The receptor protein tyrosine phosphatase density-enhanced phosphatase-1 (DEP-1) has been implicated in aberrant cancer cell growth and immune cell function, however, its function within cells has yet to be properly elucidated. To investigate the cellular function of DEP-1, stable cell lines inducibly expressing DEP-1 were generated. Induction of DEP-1 expression was found to decrease PDGF-stimulated tyrosine phosphorylation of a number of cellular proteins including the PDGF receptor, and to inhibit growth factor-stimulated phosphorylation of components of the MAPK pathway, indicating that DEP-1 antagonised PDGF receptor signalling. This was supported by data showing that DEP-1 expression resulted in a reduction in cell proliferation. DEP-1-expressing cells had fewer actin-containing microfilament bundles, reduced vinculin and paxillin-containing adhesion plaques, and were defective in interactions with fibronectin. Defective cell-substratum adhesion correlated with lack of activation of FAK in DEP-1-expressing cells. Time-lapse interference reflection microscopy of live cells revealed that although small focal contacts at the leading edge were generated in DEP-1-expressing cells, they failed to mature into stable focal adhesions, as found in control cells. Further motility analysis revealed that DEP-1-expressing cells retained limited random motility, but showed no chemotaxis towards a gradient of PDGF. In addition, cell-cell contacts were disrupted, with a change in the localisation of cadherin from discrete areas of cell-cell contact to large areas of membrane interaction, and there was a parallel redistribution of beta-catenin. These results demonstrate that DEP-1 is a negative regulator of cell proliferation, cell-substratum contacts, motility and chemotaxis in fibroblasts

    Clusterin/Apolipoprotein J immunoreactivity is associated with white matter damage in cerebral small vessel diseases

    Get PDF
    Aim: Brain clusterin is known to be associated with the amyloid‐ÎČ deposits in Alzheimer's disease (AD). We assessed the distribution of clusterin immunoreactivity in cerebrovascular disorders, particularly focusing on white matter changes in small vessel diseases. Methods: Post‐mortem brain tissues from the frontal or temporal lobes of a total of 70 subjects with various disorders including cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cerebral amyloid angiopathy (CAA) and AD were examined using immunohistochemistry and immunofluorescence. We further used immunogold electron microscopy to study clusterin immunoreactivity in extracellular deposits in CADASIL. Results: Immunostaining with clusterin antibodies revealed strong localization in arterioles and capillaries, besides cortical neurones. We found that clusterin immunostaining was significantly increased in the frontal white matter of CADASIL and pontine autosomal dominant microangiopathy and leukoencephalopathy subjects. In addition, clusterin immunostaining correlated with white matter pathology severity scores. Immunostaining in axons ranged from fine punctate deposits in single axons to larger confluent areas with numerous swollen axon bulbs, similar to that observed with known axon damage markers such as non‐phosphorylated neurofilament H and the amyloid precursor protein. Immunofluorescence and immunogold electron microscopy experiments showed that whereas clusterin immunoreactivity was closely associated with vascular amyloid‐ÎČ in CAA, it was lacking within the granular osmiophilic material immunolabelled by NOTCH3 extracelluar domain aggregates found in CADASIL. Conclusions: Our results suggest a wider role for clusterin associated with white matter damage in addition to its ability to chaperone proteins for clearance via the perivascular drainage pathways in several disease states

    Allosteric mechanism of action of the therapeutic anti-IgE antibody omalizumab

    Get PDF
    Immunoglobulin E and its interactions with receptors FcϔRI and CD23 play a central role in allergic disease. Omalizumab, a clinically approved therapeutic antibody, inhibits the interaction between IgE and FcϔRI, preventing mast cell and basophil activation, and blocks IgE binding to CD23 on B cells and antigen-presenting cells. We solved the crystal structure of the complex between an omalizumab-derived Fab and IgE-Fc, with one Fab bound to each Cϔ3 domain. Free IgE-Fc adopts an acutely bent structure, but in the complex it is only partially bent, with large-scale conformational changes in the Cϔ3 domains that inhibit the interaction with FcϔRI. CD23 binding is inhibited sterically due to overlapping binding sites on each Cϔ3 domain. Studies of omalizumab Fab binding in solution demonstrate the allosteric basis for FcϔRI inhibition and, together with the structure, reveal how omalizumab may accelerate dissociation of receptor-bound IgE from FcϔRI, exploiting the intrinsic flexibility and allosteric potential of IgE

    New developments in CLAMP: Calibration using global gridded meteorological data

    Get PDF
    Climate Leaf Analysis Multivariate Program (CLAMP) is a versatile technique for obtaining quantitative estimates for multiple terrestrial palaeoclimate variables from woody dicot leaf assemblages. To date it has been most widely applied to the Late Cretaceous and Tertiary of the mid- to high latitudes because of concerns over the relative dearth of calibration sites in modern low-latitude warm climates, and the loss of information associated with the lack of marginal teeth on leaves in paratropical to tropical vegetation. This limits CLAMP's ability to quantify reliably climates at low latitudes in greenhouse worlds of the past. One of the reasons for the lack of CLAMP calibration samples from warm environments is the paucity of climate stations close to potential calibration vegetation sites at low latitudes. Agriculture and urban development have destroyed most lowland sites and natural vegetation is now largely confined to mountainous areas where climate stations are few and climatic spatial variation is high due to topographic complexity. To attempt to overcome this we have utilised a 0.5° × 0.5° grid of global interpolated climate data based on the data set of New et al. (1999) supplemented by the ERA40 re-analysis data for atmospheric temperature at upper levels. For each location, the 3-D climatology of temperature from the ECMWF re-analysis project was used to calculate the mean lower tropospheric lapse rate for each month of the year. The gridded data were then corrected to the altitude of the plant site using the monthly lapse rates. Corrections for humidity were also made. From this the commonly returned CLAMP climate variables were calculated. A bi-linear interpolation scheme was then used to calculate the climate parameters at the exact lat/long of the site. When CLAMP analyses using the PHYSG3BR physiognomic data calibrated with the climate station based MET3BR were compared to analyses using the gridded data at the same locations (GRIDMET3BR), the results were indistinguishable in that they fell within the range of statistical uncertainty determined for each analysis. This opens the way to including natural vegetation anywhere in the world irrespective of the proximity of a meteorological station

    Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions

    Get PDF
    Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism

    Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition

    Get PDF
    Coral research is being ushered into the genomic era. To fully capitalize on the potential discoveries from this genomic revolution, the rapidly increasing number of high-quality genomes requires effective pairing with rigorous taxonomic characterizations of specimens and the contextualization of their ecological relevance. However, to date there is no formal framework that genomicists, taxonomists, and coral scientists can collectively use to systematically acquire and link these data. Spurred by the recently announced “Coral symbiosis sensitivity to environmental change hub” under the “Aquatic Symbiosis Genomics Project” - a collaboration between the Wellcome Sanger Institute and the Gordon and Betty Moore Foundation to generate gold-standard genome sequences for coral animal hosts and their associated Symbiodiniaceae microalgae (among the sequencing of many other symbiotic aquatic species) - we outline consensus guidelines to reconcile different types of data. The metaorganism nature of the coral holobiont provides a particular challenge in this context and is a key factor to consider for developing a framework to consolidate genomic, taxonomic, and ecological (meta)data. Ideally, genomic data should be accompanied by taxonomic references, i.e., skeletal vouchers as formal morphological references for corals and strain specimens in the case of microalgal and bacterial symbionts (cultured isolates). However, exhaustive taxonomic characterization of all coral holobiont member species is currently not feasible simply because we do not have a comprehensive understanding of all the organisms that constitute the coral holobiont. Nevertheless, guidelines on minimal, recommended, and ideal-case descriptions for the major coral holobiont constituents (coral animal, Symbiodiniaceae microalgae, and prokaryotes) will undoubtedly help in future referencing and will facilitate comparative studies. We hope that the guidelines outlined here, which we will adhere to as part of the Aquatic Symbiosis Genomics Project sub-hub focused on coral symbioses, will be useful to a broader community and their implementation will facilitate cross- and meta-data comparisons and analyses.CV acknowledges funding from the German Research Foundation (DFG), grants 433042944 and 458901010. Open Access publication fees are covered by an institutional agreement of the University of Konstanz
    • 

    corecore