423 research outputs found

    Julian of Norwich and her children today: Editions, translations and versions of her revelations

    Get PDF
    The viability of such concepts as "authorial intention," "the original text," "critical edition" and, above all, "scholarly editorial objectivity" is not what it was, and a study of the textual progeny of the revelations of Julian of Norwich--editions, versions, translations and selections--does little to rehabilitate them. Rather it tends to support the view that a history of reading is indeed a history of misreading or, more positively, that texts can have an organic life of their own that allows them to reproduce and evolve quite independently of their author. Julian's texts have had a more robustly continuous life than those of any other Middle English mystic. Their history--in manuscript and print, in editions more or less approximating Middle English and in translations more or less approaching Modern English--is virtually unbroken since the fifteenth century. But on this perilous journey, many and strange are the clutches into which she and her textual progeny have fallen

    Pharmacological analysis and structure determination of 7-methylcyanopindolol–bound b1-adrenergic receptor

    Get PDF
    Comparisons between structures of the b1-adrenergic receptor (AR) bound to either agonists, partial agonists, or weak partial agonists led to the proposal that rotamer changes of Ser5.46, coupled to a contraction of the binding pocket, are sufficient to increase the probability of receptor activation. (RS)-4-[3 (tertbutylamino)-2-hydroxypropoxy]-1H-indole-2 carbonitrile (cyanopindolol) is a weak partial agonist of b1AR and, based on the hypothesis above, we predicted that the addition of a methyl group to form 4-[(2S)-3 (tert-butylamino)-2-hydroxypropoxy]-7-methyl-1H-indole-2 carbonitrile (7-methylcyanopindolol) would dramatically reduce its efficacy. An eight-step synthesis of 7- methylcyanopindolol was developed and its pharmacology was analyzed. 7-Methylcyanopindolol bound with similar affinity to cyanopindolol to both b1AR and b2AR. As predicted, the efficacy of 7-methylcyanopindolol was reduced significantly compared with cyanopindolol, acting as a very weak partial agonist of turkey b1AR and an inverse agonist of human b2AR. The structure of 7-methylcyanopindolol–bound b1AR was determined to 2.4-Å resolution and found to be virtually identical to the structure of cyanopindolol-bound b1AR. The major differences in the orthosteric binding pocket are that it has expanded by 0.3 Å in 7-methylcyanopindolol–bound b1AR and the hydroxyl group of Ser5.46 is positioned 0.8 Å further from the ligand, with respect to the position of the Ser5.46 side chain in cyanopindololbound b1AR. Thus, the molecular basis for the reduction in efficacy of 7 methylcyanopindolol compared with cyanopindolol may be regarded as the opposite of the mechanism proposed for the increase in efficacy of agonists compared with antagonists

    The impact of using an income supplement to meet child poverty targets : evidence from Scotland

    Get PDF
    In 2017 the Scottish Government passed the Child Poverty (Scotland) Act with the commitment to significantly reduce the relative child poverty rate from the current prevailing level of around 25% to 10% by 2030/31. In response, the government introduced the Scottish Child Payment (SCP) that provides a direct transfer to households at a fixed rate per eligible child – currently £25 per week. In this paper we explore, using a micro to macro modelling approach, the effectiveness of using the SCP to achieve the Scottish child poverty targets. While we find that the ambitious child poverty targets can technically be met solely using the SCP, the necessary payment of £165 per week amounting to a total government cost of £3 billion per year, makes the political and economy-wide barriers significant. A key issue with only using the SCP is the non-linearity in the response to the payment; as the payment increase the marginal gain in the reduction of child poverty decreases – this is particularly evident after payments of £80 per week. A ‘policy-mix’ option combining the SCP, targeted cash transfers and other policy levels (such as childcare provision) seems the most promising approach to reaching the child poverty targets

    The impact of using an income supplement to meet child poverty targets

    Get PDF
    In 2017 the Scottish Government passed the Child Poverty (Scotland) Act with the commitment to significantly reduce the relative child poverty rate from the current prevailing level of around 25% to 10% by 2030/31. In response, the government introduced the Scottish Child Payment (SCP) that provides a direct transfer to households at a fixed rate per eligible child – currently £25 per week. In this paper we explore, using a micro to macro modelling approach, the effectiveness of using the SCP to achieve the Scottish child poverty targets. While we find that the ambitious child poverty targets can technically be met solely using the SCP, the necessary payment of £165 per week amounting to a total government cost of £3 billion per year, makes the political and economy-wide barriers significant. A key issue with only using the SCP is the non-linearity in the response to the payment; as the payment increase the marginal gain in the reduction of child poverty decreases – this is particularly evident after payments of £80 per week. A ‘policy-mix’ option combining the SCP, targeted cash transfers and other policy levels (such as childcare provision) seems the most promising approach to reaching the child poverty targets

    Evaluation of machine-learning methods for ligand-based virtual screening

    Get PDF
    Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed

    Acetylcholine prioritises direct synaptic inputs from entorhinal cortex to CA1 by differential modulation of feedforward inhibitory circuits.

    Get PDF
    Acetylcholine release in the hippocampus plays a central role in the formation of new memory representations. An influential but largely untested theory proposes that memory formation requires acetylcholine to enhance responses in CA1 to new sensory information from entorhinal cortex whilst depressing inputs from previously encoded representations in CA3. Here, we show that excitatory inputs from entorhinal cortex and CA3 are depressed equally by synaptic release of acetylcholine in CA1. However, feedforward inhibition from entorhinal cortex exhibits greater depression than CA3 resulting in a selective enhancement of excitatory-inhibitory balance and CA1 activation by entorhinal inputs. Entorhinal and CA3 pathways engage different feedforward interneuron subpopulations and cholinergic modulation of presynaptic function is mediated differentially by muscarinic M3 and M4 receptors, respectively. Thus, our data support a role and mechanisms for acetylcholine to prioritise novel information inputs to CA1 during memory formation

    Author Correction: Acetylcholine prioritises direct synaptic inputs from entorhinal cortex to CA1 by differential modulation of feedforward inhibitory circuits

    Get PDF
    Acetylcholine release in the hippocampus plays a central role in the formation of new memory representations. An influential but largely untested theory proposes that memory formation requires acetylcholine to enhance responses in CA1 to new sensory information from entorhinal cortex whilst depressing inputs from previously encoded representations in CA3. Here, we show that excitatory inputs from entorhinal cortex and CA3 are depressed equally by synaptic release of acetylcholine in CA1. However, feedforward inhibition from entorhinal cortex exhibits greater depression than CA3 resulting in a selective enhancement of excitatory-inhibitory balance and CA1 activation by entorhinal inputs. Entorhinal and CA3 pathways engage different feedforward interneuron subpopulations and cholinergic modulation of presynaptic function is mediated differentially by muscarinic M3 and M4 receptors, respectively. Thus, our data support a role and mechanisms for acetylcholine to prioritise novel information inputs to CA1 during memory formation
    corecore