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List of non-standard abbreviations: 

β1AR: β1-adrenergic receptor 

β2AR: β2-adrenergic receptor 

Carazolol: 1-(9H-carbazol-4-yloxy)-3-(propan-2-ylamino)propan-2-ol 

CHO, Chinese hamster ovary 

CGP12177, (-)-4-(3-tert-butylamino-2-hydroxypropoxy)- benzimidazol-2-one 

CGP20712A, 2-hydroxy-5-(2-[{hydroxy-3-(4-[1-methyl-4-trifluoromethyl-2-

imidazolyl]phenoxy)propyl}amino]ethoxy)benzamide 

Cyanopindolol: (RS)-4-[3-(tert-butylamino)-2-hydroxypropoxy]-1H-indole-2-

carbonitrile 

CRE-SPAP, reporter gene containing 6 cAMP response elements (CRE) upstream of 

a secreted placental alkaline phosphatase (SPAP) reporter gene 

IBMX, 1-methyl-3-(2-methylpropyl)-7H-purine-2,6-dione 

ICI 118551 (-)-1-(2,3-[dihydro-7-methyl-1H-inden-4-yl]oxy)-3-([1-methylethyl]-

amino)-2-butanol 

7-methylcyanopindolol, 4-[(2S)-3-(tert-butylamino)-2-hydroxypropoxy]-7-methyl-

1H-indole-2-carbonitrile  

T4L: T4 lysozyme 

TM: transmembrane region 
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Abstract 

 

Comparisons between structures of the β1-adrenergic receptor (β1AR) bound to either 

agonists, partial agonists or weak partial agonists led to the proposal that rotamer 

changes of Ser5.46, coupled to a contraction of the binding pocket, are sufficient to 

increase the probability of receptor activation. Cyanopindolol is a weak partial agonist 

of β1AR and, based on the hypothesis above, we predicted that the addition of a 

methyl group to form 7-methylcyanopindolol would reduce dramatically its efficacy. 

An eight-step synthesis of 7-methylcyanopindolol was developed and its 

pharmacology analysed. 7-Methylcyanopindolol bound with similar affinity to 

cyanopindolol to both β1AR and β2AR. As predicted, the efficacy of 7-

methylcyanopindolol was reduced significantly compared to cyanopindolol, acting as 

a very weak partial agonist of turkey β1AR and an inverse agonist of human β2AR. 

The structure of 7-methylcyanopindolol-bound β1AR was determined to 2.4 Å 

resolution and found to be virtually identical to the structure of cyanopindolol-bound 

β1AR. The major differences in the orthosteric binding pocket are that it has expanded 

by 0.3 Å in 7-methylcyanopindolol-bound β1AR and the hydroxyl group of Ser5.46 is 

positioned 0.8 Å further from the ligand with respect to the position of the Ser5.46 side 

chain in cyanopindolol-bound β1AR. Thus the molecular basis for the reduction in 

efficacy of 7-methylcyanopindolol compared to cyanopindolol may be regarded as the 

opposite of the mechanism proposed for the increase in efficacy of agonists compared 

to antagonists.  
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Introduction 

The β1 and β2 adrenergic receptors (β1AR and β2AR) are well-studied 

prototypical members of the G protein-coupled receptor (GPCR) superfamily 

(Venkatakrishnan et al., 2013). In vivo, the receptors are activated by both adrenaline 

and noradrenaline, with important clinical roles in modulation of cardiac output 

(β1AR) and bronchodilatation (β2AR). Recent successes in the structure determination 

of both β1AR (Warne et al., 2008; Moukhametzianov et al., 2011; Warne et al., 2011; 

Warne et al., 2012; Christopher et al., 2013; Miller-Gallacher et al., 2014) and β2AR 

(Cherezov et al., 2007; Wacker et al., 2010; Rosenbaum et al., 2011; Rasmussen et 

al., 2011a; Rasmussen et al., 2011b) have led to a molecular understanding of receptor 

activation (Lebon et al., 2012). Binding of a full agonist to the receptors results in a 

contraction of the ligand binding pocket by 1.0 Å for β1AR and 1.2 Å for β2AR and a 

rotamer change of Ser5.46 so that it forms a hydrogen bond with the para-hydroxyl 

group of the catecholamine moiety of the agonist. However, the agonist-bound 

receptors remain in an overall conformation that is consistent with an inactive state. 

The role of the agonist is thus to increase the probability of active state formation, but 

the agonist is insufficient on its own to stabilize the active state. A crystal structure of 

β2AR in the active state bound to the heterotrimeric G protein Gs (Rasmussen et al., 

2011b) showed that the fully active state is characterized by the formation of a cleft in 

the intracellular face of the receptor and a 16 Å outward movement of the cytoplasmic 

end of transmembrane helix 6 (H6).  

Structures have been determined of β1AR bound to full agonists (Warne et al., 

2011), partial agonists (Warne et al., 2011), weak partial agonists (Warne et al., 2008; 

Moukhametzianov et al., 2011; Miller-Gallacher et al., 2014) and biased agonists 

(Warne et al., 2012). All these structures are in an inactive state, so the structures with 
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agonists represent the encounter complex between the ligand and receptor before the 

receptor becomes activated. As mentioned above, full agonists cause a contraction of 

the binding pocket and cause a rotamer change of Ser5.46 due to hydrogen bond 

formation. In addition, there is a rotamer change of Ser5.42. The combination of these 

changes results in the weakening of helix-helix interactions between H3, H4 and H5 

that has been proposed to be the important initial event that increases the probability 

of the receptor adopting an active conformation (Warne and Tate, 2013). In support of 

this, partial agonists cause a contraction of the binding pocket, the rotamer change of 

Ser5.42, but not the rotamer change of Ser5.46. Weak partial agonists cause only the 

rotamer change of Ser5.42, but not of Ser5.46 and they do not cause the contraction of the 

ligand binding pocket due to the additional oxymethylene spacer in the backbone of 

the ligand (Fig 1). Thus there appears to be a direct correlation between specific 

differences in the structure of the receptor-ligand complex and the efficacy of the 

ligand.  

A prediction of the molecular mechanism for agonist activation of β1AR is that 

the efficacy of a ligand should be reduced upon the addition of a methyl group in the 

position analogous to the para-hydroxyl of, for example, isoprenaline (Warne et al., 

2011), to prevent the rotamer change of Ser5.46 by steric hindrance (see Fig. 1 for 

structures of ligands discussed in the text). To test this hypothesis, we therefore made 

the methylated version of cyanopindolol, 7-methylcyanopindolol. Cyanopindolol was 

used as the starting point for this study because its properties are pharmacologically 

and structurally well defined. Through the single modification of cyanopindolol to 

make 7-methylcyanopindolol, we could be certain that the only effect would be on the 

rotamer comformation of Ser5.46. In this way we could be certain that any changes in 

efficacy were due to this modification and not any other differences in the ligand.  
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Materials and methods 

Materials. 7-Methylcyanopindolol (4-[(2S)-3-(tert-butylamino)-2-hydroxypropoxy]-

7-methyl-1H-indole-2-carbonitrile) was synthesized as described below. 3H-

CGP12177, 3H-adenine and 14C-cAMP were from Amersham International 

(Buckinghamshire, UK) and Microscint 20 and Ultima Gold XR scintillation fluid 

were from PerkinElmer (Shelton, CT, USA).  Foetal calf serum was from PAA 

Laboratories (Teddington, Middlesex, UK).  CGP20712A was from Tocris Life 

Sciences (Avonmouth, UK). S-Cyanopindolol, carazolol, ICI 118551, isoprenaline 

and propranolol were from Sigma Chemicals (Poole, Dorset, UK). DM (n-decyl-β-D-

maltopyranoside) was purchased from Anatrace (Maumee, USA). Monoolein was 

from Nu Chek Prep (Elysian, USA). CHS (cholesteryl hemisuccinate) and cholesterol 

were purchased from Sigma-Aldrich (Dorset, England). 

 

Cell culture 

Pharmacological studies were conducted in CHO cells stably expressing either the 

turkey β1AR (CHO-tβ1, receptor expression level 148 fmol/mg protein, defined as 

tβtrunc in (Baker, 2010b) or the human β2-adrenoceptor (CHO-hβ2, receptor 

expression level 466 fmol/mg protein; (Baker et al., 2003)). Both of these cell lines 

also contained the stably transfected reporter gene CRE-SPAP. Negative control cells 

were parental CHO cells (CHO-CRE-SPAP cells), which are CHO cells with the 

stably transfected reporter but without any transfected receptor (Baker et al., 2003). 

Cells were grown in Dulbecco’s modified Eagle’s medium nutrient mix F12 

(DMEM/F12) containing 10% foetal calf serum and 2 mM L-glutamine in a 37°C 

humidified 5% CO2 : 95% air atmosphere. 
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3H-CGP12177 whole cell binding 

Ligand affinity was measured using 3H-CGP12177 whole cell binding as previously 

described (Baker, 2010a). Briefly, cells were grown to confluence in white-sided, 

clear-bottomed 96-well view plates.  The following day, the media was removed and 

replaced with 100 µl of serum-free media containing the competing ligand at twice 

the final required concentration followed immediately by 100 µl of 3H-CGP12177.  

After 2 hours incubation (37°C, 5% CO2), the cells were washed twice by the addition 

and removal of 200 µl phosphate buffered saline (4ºC). A white base was applied to 

the plate, 100 µl Microscint 20 was added to each well, a sealant top applied to the 

top of the plate, and after at least 8 hours at room temperature, the plates were 

counted on a TopCount (PerkinElmer) at 21°C for 2 minutes per well. Propranolol (10 

µM final concentration) was used to determine non-specific binding in all cases. All 

data points were performed in triplicate and each 96-well plate also contained 6 

determinations of total and non-specific binding. 

 

3H-cAMP accumulation 

Cells were grown to confluence in 24-well plates. The following day, the cells were 

pre-labelled with 3H-adenine (2 hours incubation with 0.5 ml media containing 1 µCi 

3H-adenine).  The 3H-adenine was removed, the cells washed by the addition and 

removal of 1 ml serum-free media, then 1 ml serum-free media containing 1 mM 

IBMX was added to each well.  After 15 minutes, 10 µl ligand was added to each well 

and incubated for 5 hours (37°C, 5% CO2).  The reaction was terminated by the 

addition of 50 µl concentrated HCl per well, the plates frozen and thawed and 3H-

cAMP separated from other 3H-nucleotides by sequential Dowex and alumina column 
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chromatography, as previously described (Baker, 2010b). Basal activity and a positive 

control (response to 10 µM isoprenaline) were included in all plates for every 

experiment.  Responses are therefore expressed as a percentage of this maximum, or 

in the case of inverse agonists, as a percentage of the basal response. 

 

Data analysis 

For whole cell binding, a sigmoidal binding curve (equation 1) was fitted to the 

concentration response curves using Graphpad Prism 2.01 and the IC50 was then 

determined as the concentration required to inhibit 50% of the specific binding. 

 

Equation 1:     % uninhibited binding =    100  –    (100 x A)      +  NS 
                                                                                 (A + IC50) 

A is the concentration of the competing ligand, IC50 is the concentration at which half 

of the specific binding of 3H-CGP12177 has been inhibited, and NS is the non-

specific binding.   

From this IC50 value and the known concentration of 3H-CGP12177, a KD value 

(concentration at which half the receptors are bound by the competing ligand) was 

calculated using equation 2.  The KD values for 3H-CGP12177 were 0.42 nM at the 

turkey β1AR  (Baker, 2010b) and 0.17 nM at the human β2AR (Baker, 2010a). 

 

Equation 2:  KD   =    .                            IC50                                   . 
                                   1  +  ([3H-CGP12177]/KD of 3H-CGP12177) 

For functional responses (3H-cAMP accumulation and CRE-SPAP gene 

transcription), most agonist responses were described by a one-site sigmoidal 

concentration response curve (equation 3): 
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Equation 3:    Response = Emax x [A] 
                                           EC50 + [A] 

Emax is the maximum agonist response, [A] is the agonist concentration and EC50 is 

the concentration of agonist that produces 50% of the maximal response 

However, several of the responses were best described by a two-site concentration 

response (equation 4):  

Equation 4:     % maximal stimulation  =          [A] x N          +     [A] x (100-N)  
                                                                       ([A] + EC150)           ([A] + EC250) 

N is the percentage of site 1, [A] is the concentration of agonist and EC150 and EC250 

are the respective EC50 values for the two agonist sites.   

All data are presented as the mean ± standard error of the mean (SEM) of n separate 

experiments. 

 

Synthesis of 4-[(2S)-3-(tert-butylamino)-2-hydroxypropoxy]-7-methyl-1H-indole-

2-carbonitrile (7-MeCyp). The synthesis of 7-MeCyp was performed in an 8-step 

procedure (Fig. 2) that is described in detail below (Steps 1-8). Where no preparative 

routes are included, the relevant intermediate is commercially available. Commercial 

reagents were utilized without further purification. Room temperature (rt) refers to 

approximately 20-27°C. 1H NMR spectra were recorded at 400 MHz on either a 

Bruker or Jeol instrument. Chemical shift values are expressed in parts per million 

(ppm), i.e. (δ)-values. The following abbreviations are used for the multiplicity of the 

NMR signals: s = singlet, br = broad, d = doublet, t = triplet, m = multiplet. Coupling 

constants are listed as J values, measured in Hz. NMR and mass spectroscopy results 

were corrected to account for background peaks. Chromatography refers to column 

chromatography performed using 60-120 mesh silica gel and executed under nitrogen 
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pressure (flash chromatography) conditions. TLC for monitoring reactions refers to 

TLC run using the specified mobile phase and the Silica gel F254 as a stationary 

phase from Merck.  

LCMS experiments were typically carried out using electrospray conditions as 

specified for each compound under the following conditions:  

Method A. Instrument: Waters Acquity H-class UPLC with SQ detector using BEH 

C18 (50*2.1 mm id 1.7 µm) and using water (0.1% ammonium hydroxide) and 

MeCN (0.1% ammonium hydroxide) as the mobile phase. The eluent gradient 

program was MeCN (0.1% ammonium hydroxide) from 10% to 100% for 2.5 min, 

100% MeCN (0.1% ammonium hydroxide) for 2 min and MeCN (0.1% ammonium 

hydroxide) from 100% to 10% for 0.5 min. The flow rate was 0.3 ml/min. 

Method B. Instruments: HP1100 with HP DAD G1315A detector and Micromass ZQ 

using a Phenomenex Gemini-NX C-18, 3 micron, 2.0 x 30 mm column using water 

(0.1% ammonium hydroxide) and MeCN (0.1% ammonium hydroxide) as the mobile 

phase. The eluent gradient program was MeCN (0.1% ammonium hydroxide) from 

0% to 95% for 8.4 min, 95% MeCN (0.1% ammonium hydroxide) for 1 min and 

MeCN (0.1% ammonium hydroxide) from 100% to 10% for 0.5 min. The flow rate 

was 1.5 ml/min, injection volume was 3 µl, column temperature 45 °C and UV 

detection from 230 nM to 400 nM. 

Step 1: Synthesis of 2-(benzyloxy)-5-methylbenzaldehyde. 2-Hydroxy-5-

methylbenzaldehyde (5.00 g, 36 mmol) was dissolved in DMF (30 ml), K2CO3 (6.07 

g, 44 mmol) and benzyl bromide (4.36 ml, 36 mmol) were added, the reaction mixture 

was warmed to 65°C and stirred for 6 h. The reaction mixture was cooled to room 

temperature and poured into water (500 ml). The precipitate was filtered, washed with 

water (100 ml) and dried to give 2-(benzyloxy)-5-methylbenzaldehyde (7.0 g, 84 % 
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yield) as a white solid. LCMS (Method A): m/z 227 [M+H]+ (ES+), at 3.14 min, 

99.6%. 1H NMR: (400 MHz, DMSO-d6) δ: 2.28 (s, 3H), 5.27 (s, 2H), 7.23 (d, J = 8.5, 

1H), 7.33 - 7.36 (m, 1H), 7.39 - 7.42 (m, 2H), 7.43 - 7.47 (m, 1H), 7.48 - 7.51 (m, 

3H), 10.41 (br. s, 1H). 

Step 2: Synthesis of methyl 4-(benzyloxy)-7-methyl-1H-indole-2-

carboxylate. A solution of 2-(benzyloxy)-5-methylbenzaldehyde (1.87 g, 8.26 mmol) 

and methyl azidoacetate (4 ml, 40.8 mmol) in methanol (20 ml) was added drop wise 

to a solution of sodium metal (0.75 g, 33.04 mmol) in methanol (5 ml) at -20°C. The 

mixture was stirred at -8°C for 3 h and then poured onto ice, filtered and the 

precipitate was dissolved in xylene (20 ml). The reaction mixture was heated at 130°C 

for 18 h. The reaction mixture was then cooled to 0°C and the resulting precipitate 

was filtered and dried to give methyl 4-(benzyloxy)-7-methyl-1H-indole-2-

carboxylate (0.9 g, 36 % yield) as a white solid. LCMS (Method A): m/z 296 

[M+H]+ (ES+), at 3.47 min, 100%. 1H NMR: (400 MHz, DMSO-d6) δ: 2.43 (s, 3H), 

3.87 (s, 3H), 5.21 (s, 2H), 6.55 (d, J = 7.5, 1H), 6.94 (d, J = 7.5, 1H), 7.17 - 7.18 (m, 

1H), 7.32 - 7.35 (m,1H), 7.41 (t, J = 7.5, 2H), 7.50 - 7.52 (m, 2H), 11.81 (br. s, 1H). 

Step 3: synthesis of 4-(benzyloxy)-7-methyl-1H-indole-2-carboxylic acid. 

Methyl 4-(benzyloxy)-7-methyl-1H-indole-2-carboxylate (0.9 g, 3.0 mmol) was 

dissolved in ethanol (30 ml) and 2N NaOH was added (41.4 ml, 105 mmol), the 

reaction mixture was stirred for 4 h at 90°C. The reaction mixture was cooled to room 

temperature and acidified to pH 4 with aqueous 3N HCl. The precipitate was filtered, 

wash with water (100 ml) and dried to give 4-(benzyloxy)-7-methyl-1H-indole-2-

carboxylic acid (0.7 g, 82% yield) as a white solid. LCMS (Method A): m/z 280 [M-

H]+ (ES-), at 3.16 min, 100%. 1H NMR: (400 MHz, DMSO-d6) δ: 2.41 (s, 3H), 5.19 

(s, 2H), 6.49 (d, J = 7.5, 1H), 6.84 (d, J = 7.5, 1H), 6.97 (s, 1H), 7.31 - 7.34 (m, 1H), 
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7.40 (t, J = 7.5, 2H), 7.49 - 7.51 (m, 2H), 11.27 (br. s, 1H), one exchangeable proton 

not observed. 

Step 4: synthesis of 4-(benzyloxy)-7-methyl-1H-indole-2-carboxamide. 4-

(benzyloxy)-7-methyl-1H-indole-2-carboxylic acid (0.9 g, 3.1 mmol) was dissolved 

in diethyl ether (18 ml). Thionyl chloride (0.78 g, 6.5 mmol) was added at 0°C and the 

reaction mixture stirred at room temperature for 5 h. The solvents were removed in 

vacuo and the residues were dissolved in diethyl ether (10 mL). The reaction mixture 

was cooled to -20°C and ammonia gas was bubbled through for 5 min. The solvents 

were removed in vacuo and the crude product was purified by column 

chromatography (normal phase silica, 10 to 20% ethyl acetate in hexane) to give 4-

(benzyloxy)-7-methyl-1H-indole-2-carboxamide (0.6 g, 67% yield) as a white solid. 

LCMS (Method A): m/z 281 [M+H]+ (ES+), at 3.04 min, 99.4%. 1H NMR: (400 

MHz, DMSO-d6) δ: 2.42 (s, 3H), 5.18 (s, 2H), 6.52 (d, J = 7.5, 1H), 6.85 (d, J = 7.5, 

1H), 7.25 - 7.27 (m, 2H), 7.32 - 7.35 (m, 1H), 7.42 (t, J = 7.5, 2H), 7.50 - 7.52 (m, 

2H), 7.91 (br. s, 1H), 11.34 (br. s, 1H). 

Step 5: synthesis of 4-hydroxy-7-methyl-1H-indole-2-carboxamide. 4-

(Benzyloxy)-7-methyl-1H-indole-2-carboxamide (0.6 g, 2.4 mmol) was dissolved in 

methanol  (20 ml) and 10% Pd/C (0.2 g, 1.8 mmol) was added. The reaction mixture 

was stirred at room temperature under 1 atm of H2 gas for 8 h. The reaction mixture 

was filter through celite and the solvents were removed in vacuo to give 4-hydroxy-7-

methyl-1H-indole-2-carboxamide (0.4 g, 86% yield) as a white solid. LCMS 

(Method A): m/z 191 [M+H]+ (ES+), at 0.59 min, 80.5%. 1H NMR: (400 MHz, 

DMSO-d6) δ: 2.37 (s, 3H), 6.28 (d, J = 7.5, 1H), 6.73 (d, J = 7.5, 1H), 7.15 - 7.17 (m, 

1H), 7.27 (br. s, 1H), 7.87 (br. s, 1H), 9.38 (br. s, 1H), 11.09 (br. s, 1H). 
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Step 6: synthesis of 4-hydroxy-7-methyl-1H-indole-2-carbonitrile. 4-

Hydroxy-7-methyl-1H-indole-2-carboxamide (0.4 g, 2.1 mmol) was dissolved in 1,4-

dioxane (4 ml). POCl3 (0.5 ml) was added and the reaction mixture was stirred at 75°C 

for 15 min. The reaction mixture was cooled to room temperature partitioned and 

quenched with ammonia solution (5 mL), partitioned between H2O (50 ml) and 

EtOAc (100 ml), the aqueous layer was further extracted with EtOAc (3 x 100 ml), 

the organic layers were combined and dried (Na2SO4). Solvent was removed in vacuo 

the crude product was purified by column chromatography (normal phase silica, 15 to 

20% ethyl acetate in hexane) to give 4-hydroxy-7-methyl-1H-indole-2-carbonitrile 

(0.2 g, 55% yield) as a yellow solid. LCMS (Method A): m/z 171 [M-H]+ (ES-), at 

1.56 min, 92.1%. 1H NMR: (400 MHz, DMSO-d6) δ: 2.34 (s, 3H), 6.37 (d, J = 7.5, 

1H), 6.90 (d, J = 7.5, 1H), 7.32 - 7.33 (m, 1H), 9.71 (br. s, 1H), 12.11 (br. s, 1H). 

Step 7: synthesis of 7-methyl-4-[(2S)-oxiran-2-ylmethoxy]-1H-indole-2-

carbonitrile. 4-Hydroxy-7-methyl-1H-indole-2-carbonitrile (0.25 g, 1.4 mmol) was 

dissolved in water (2.5 ml) and 1,4-dioxane (1 ml). NaOH (0.058 g, 1.4 mmol) was 

added followed by (S)-epichlorohydrine (1.25 ml, 0.58 mmol). The reaction mixture 

was stirred at room temperature for 16 h. The reaction mixture was partitioned 

between H2O (50 ml) and ethyl acetate (50 ml), the aqueous layer was further 

extracted with ethyl acetate (2 x 50 ml), the organic layers were combined and dried 

(Na2SO4). Solvent was removed in vacuo to give 7-methyl-4-[(2S)-oxiran-2-

ylmethoxy]-1H-indole-2-carbonitrile (0.2 g, 60% yield) as a yellow gum which was 

used in the next step without further purification. LCMS (Method A): m/z 229 

[M+H]+ (ES+), at 1.94 min, 70%.  

Step 8: synthesis of 4-[(2S)-3-(tert-butylamino)-2-hydroxypropoxy]-7-

methyl-1H-indole-2-carbonitrile. 7-methyl-4-[(2S)-oxiran-2-ylmethoxy]-1H-indole-
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2-carbonitrile (0.19 g, 0.8 mmol) was dissolved in tert-butylamine (2.85 ml, 26.9 

mmol) and the reaction mixture was stirred at 70°C for 8 h. The solvent was removed 

in vacuo and the residue was purified by reverse phase prep HPLC [X Bridge, C-18, 

150×30 mm, 5 µm, 30 ml per min, gradient 50% to 100% (over 10 min) then 100% (2 

min) acetonitrile in 10% acetonitrile/water)] to give 4-[(2S)-3-(tert-butylamino)-2-

hydroxypropoxy]-7-methyl-1H-indole-2-carbonitrile (0.02 g, 8% yield) as a light 

yellow solid. LCMS (Method B): m/z 302 [M+H]+ (ES+), at 3.95 min, 100%. 1H 

NMR: (400 MHz, DMSO-d6) δ: 1.09 (s, 9H), 2.36 (s, 3H), 2.56 – 2.68 (m, 2H), 3.83 

– 3.86 (m, 1H), 3.93 – 3.97 (m, 1H),  4.02 – 4.06 (m, 1H), 6.48 (d, J = 7.8, 1H), 6.99 

(d, J = 7.8, 1H), 7.30 (s, 1H), 12.26 (br. s, 1H). Two exchangeable protons were not 

observed. 13C NMR: (400 MHz, DMSO-d6) δ: 16.45, 29.25, 45.63, 50.17, 69.38, 

71.22, 101.62, 104.73, 111.47, 114.42, 115.24, 117.72, 126.70, 138.40, 151.32. 

 

Expression, purification, and crystallization of β1AR. The β44-TS construct was 

used, which contained additional thermostabilising mutations, I1293.40V, E1303.41W, 

Y3437.53L (Miller and Tate, 2011) to the previously published turkey (Meleagris 

gallopavo) β1AR construct, β44-m23 (Warne et al., 2009; Warne et al., 2011). The 

construct used here is identical to that used for the structure determination of β1AR at 

2.1 Å resolution (Miller-Gallacher et al., 2014), except that it contains the E1303.41W 

mutation to improve the amount of functional receptor expressed and Asp322 is 

identical to the wild type receptor, instead of being mutated to Lys to form a salt 

bridge in the extracellular region. None of these mutations affect the structure of the 

binding pocket of the receptor. Ballesteros-Weinstein numbers are shown as 

superscripts (Ballesteros, 1995).  
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Expression of β44-TS using recombinant baculovirus and receptor purification 

were all performed as described previously (Warne et al., 2003; Warne et al., 2009), 

although expression was performed in High FiveTM cells grown in ESF921 medium 

(Expression systems). A 2-fold increase in functional expression to 8 mg/L culture 

was observed with this construct compared with β44-m23, which is most likely 

attributable to the inclusion of the mutation E1303.41W (Roth et al., 2008). 

Solubilisation of the receptor from the membrane fraction was performed using 1.5% 

DM and all buffers used in the purification contained 0.1% DM.  Purified receptor 

was competitively eluted from the final alprenolol Sepharose affinity column with 

100 µM 7-methyl-cyanopindolol in buffer [20 mM Tris-HCl (pH 7.6), 0.35 M NaCl, 

0.1% DM and 1 mM EDTA (pH 8.0)].  For desalting and concentration, the sample 

(15 – 20 ml) was concentrated to 0.1 ml using an Amicon-ultra concentrator 

(Ultracel-50K; Millipore), diluted 5 – 10-fold in dilution buffer [20 mM Tris-HCl 

(pH 7.6), 0.1 M NaCl, 0.1% DM, 0.1 mM EDTA and 1 mM 7-methyl-cyanopindolol] 

and concentrated down again to 0.1 ml.  This step was repeated twice and finally 

receptor was concentrated to 30 – 50 mg/ml.  Before crystallization, CHS was added 

from a concentrated stock (10 mg/ml in 2% DM) to give a final concentration of 2 

mg/ml CHS and 0.4% DM.  Protein determination was performed using the amido 

black assay (Schaffner and Weissmann, 1973). 

Crystals were generated using the lipidic cubic phase (LCP) method in 

monoolein.  Monoolein and purified receptor were drawn into two separate Hamilton 

syringes in a 3:2 (v:v) ratio of monoolein:protein solution.  100 nl of the protein:lipid 

mixture was dispensed on a plastic plate, overlaid by 500 nl of precipitant solution (18 

– 36% PEG 600 and 0.1 M ADA pH 7.0) in each well with a mosquito-LCP (TTP 

Labtech), sealed with a plastic cover, and stored in a humidified 23˚C incubator.  
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Crystals grew as thin plates in LCP and reached maximum dimensions of 200 × 200 x 

~10 µM.  Crystals were directly picked from LCP and cryo-cooled in liquid nitrogen. 

 

Data collection, structure solution and refinement 

Diffraction data were collected from 4 cryo-cooled crystals on beamline ID29 

(wavelength, 0.9723Å) at the European Synchrotron Radiation Facility (Grenoble, 

France) and on beamline I24 (wavelength, 0.9687Å) at the Diamond Light Source 

(Oxfordshire, UK).  Thirteen wedges of data from 4 crystals were merged.  Images 

were processed with MOSFLM (Leslie, 2006) and AIMLESS (Evans, 2006; Evans, 

2011). The structure was solved by molecular replacement with PHASER (McCoy et 

al., 2007) using the β1AR-LCP structure with cyanopindolol bound (Miller-Gallacher 

et al., 2014) as a starting model.  Refinement, rebuilding and validation were carried 

out with REFMAC5 (Murshudov et al., 1997; Murshudov et al., 2011), COOT 

(Emsley et al., 2010) and MOLPROBITY (Davis et al., 2007; Chen et al., 2010). 

 

Results 

 

The affinity of 7-methylcyanopindolol for turkey β1AR and human β2AR 

7-Methylcyanopindolol was synthesized in an 8-step process to yield 20 mg of pure 

product as defined by LCMS and the structure was confirmed by 1H and 13C NMR 

(see Methods). The affinity of 7-methylcyanopindolol for turkey β1AR and human 

β2AR was compared with other well-characterized antagonists through competition 

binding assays using 3H-CGP12177 and performed on whole cells (Fig. 3 and Table 

I). The affinity of turkey β1AR for 7-methylcyanopindolol was 43 ± 3 pM (n=6), 

which is very similar to its affinity for cyanopindolol (35 ± 3 pM, n=6). Human β2AR 
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bound both ligands with similar affinities to turkey β1AR. The affinities of the 

receptors for two other antagonists (used in the efficacy studies below), carazolol and 

ICI118551, were also determined and were found to be similar to previous 

determinations (Baker, 2010a; Baker, 2010b).  

 

The efficacy of 7-methylcyanopindolol at turkey β1AR 

Previous studies have shown a large response window in 3H-cAMP accumulation 

measurements in a CHO cell line stably expressing turkey β1AR (CHO-tβ1, 148 fmol 

of receptor per mg protein) to measure small responses in ligand efficacy (Baker, 

2010a). Isoprenaline stimulated an increase in 3H-cAMP accumulation that was 22.5 ± 

1.3 fold over basal, confirming a large response window (n=4; Fig. 4). As previously 

observed (Baker, 2010b), cyanopindolol elicited a biphasic response curve with the 

maximum response reaching 31.8 ± 1.1% (n=4) of the response elicited by the full 

agonist isoprenaline (Table II). In contrast, 7-methylcyanopindolol gave a response 

that reached a maximum of 2.3 ± 0.3% (n=4) of that attained by isoprenaline. Whilst 

it appeared that this response was best described by a single site sigmoidal response 

curve, a second component cannot be excluded because the increase in 3H-cAMP was 

so small. ICI118551, a potent inverse agonist of β2AR (Bond et al., 1995; Azzi et al., 

2001), gave no response. Carazolol was previously described as a partial inverse 

agonist of the human β2AR (Rosenbaum et al., 2007) although other studies have 

shown it to stimulate a partial agonist response at the human β1AR and β2AR (Baker, 

2010a) and the turkey β1AR . Here, carazolol was again shown to be a weak partial 

agonist of turkey β1AR, and it elicited a biphasic response similar to that seen for 

cyanopindolol (Fig. 4 and Table II), and similar to that seen at the human β1AR 

(Baker, 2010a).  
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The efficacy of 7-methylcyanopindolol at human β2AR 

The results from the previous section indicated that 7-methylcyanopindolol was an 

exceedingly weak partial agonist of turkey β1AR, but as no convincing inverse 

agonism was detected in this assay with ICI118551, the experiments were repeated on 

human β2AR (cell line CHO-hβ2, receptor expression level 466 fmol receptor per mg 

protein), which has higher basal activity than β1AR (Engelhardt et al., 2001). 

Isoprenaline stimulated a large increase in 3H-cAMP accumulation in CHO-β2 cells 

(61.4 ± 5.4 (n=8) fold over basal; Fig. 4). Cyanopindolol was found to stimulate an 

agonist response (with a maximum stimulation of 8.0 % that of isoprenaline, Figure 4, 

Table III) and a small stimulation was also seen in response to carazolol. When 7-

methyl-cyanopindolol was examined, there was no increase in 3H-cAMP 

accumulation, but rather a very small decrease in basal activity. As inverse agonism 

has previously been reported in this cell line (Baker et al., 2003), the response to 7-

methylcyanopindolol was examined alongside that of the known inverse agonist 

ICI118551 (Fig. 4). ICI118551 was confirmed to have inverse agonist activity 

resulting in a decrease of basal activity by 55%. The inverse activity of 7-methyl-

cyanopindolol was found to be less, causing a decrease in basal activity by 25%. 

 

Efficacy of 7-methylcyanopindolol in CRE-gene transcription responses 

The β-antagonist propranolol acts as an inverse agonist of the G protein-coupled 

pathway, causing a decrease in cAMP production, but it stimulates CRE-gene 

transcription in the CHO-hβ2 cell line through signaling via the G protein-

independent MAP kinase pathway through β-arrestins (Baker et al., 2003). As 7-

methylcyanopindolol was found to be a weak inverse agonist, its response at the level 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on September 18, 2015 as DOI: 10.1124/mol.115.101030

 at A
SPE

T
 Journals on O

ctober 8, 2015
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL#101030	   20	  

of CRE-gene transcription was also investigated. For turkey β1AR, the CRE-gene 

transcription responses observed for cyanopindolol was similar to the response in the 

3H-cAMP accumulation studies (Fig. 5, Table II), but no response was detected for 7-

methylcyanopindolol. For human β2AR, an agonist response was observed for 

cyanopindolol, but 7-methylcyanopindolol did not stimulate an increase in CRE-

SPAP production (Figure 5, Table III). There is thus no evidence for biased signaling 

through β-arrestins by 7-methylcyanopindolol. 

Negative control experiments in CHO-CRE-SPAP cells (i.e. with no transfected 

receptor) showed that 10 µM forskolin stimulated a response that was 18.3 ± 4.7 fold 

over basal (n=4) in the 3H-cAMP accumulation assay (not shown) and 5.9 ± 0.5 fold 

over basal (n=4) in the CRE-gene transcription assays. No response was observed in 

CHO-CRE-SPAP cells upon addition of either cyanopindolol, 7-methyl-

cyanopindolol, carazolol or isoprenaline (n=4 in each case; Figure 5).  

 

Structure of 7-methylcyanopindolol-bound β1AR 

To produce high-quality crystals of β1AR, a thermostabilized version of the 

receptor was used that contained 9 thermostabilizing mutations in addition to 

truncations at the N-terminus, C-terminus and cytoplasmic loop 3 (see Materials and 

Methods). Thermostabilized β1AR was expressed using the baculovirus expression 

system, purified by Ni2+-affinity chromatography and alprenolol sepharose affinity 

chromatography (Warne et al., 2003; Warne et al., 2009) and crystallized using the 

lipidic cubic phase technique (Miller-Gallacher et al., 2014). Data were collected at 

synchrotron microfocus beamlines and the structure determined by molecular 

replacement and refined to a final resolution of 2.4 Å (Table IV). The final model 

contained one receptor molecule per asymmetric unit, associated with 2 Na+ ions, 5 
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lipids and 28 water molecules, with good density for 7-methylcyanopindolol in the 

ligand binding pocket (Fig. 6). The receptor is in the inactive state and is virtually 

identical to the structure of cyanopindolol-bound receptor (PDB code 4BVN; RMSD 

0.19 Å over 2062 atoms) (Miller-Gallacher et al., 2014). The major difference in the 

ligand binding pocket between β1AR bound to either cyanopindolol or 7-

methylcyanopindolol is that the hydroxyl group of Ser2155.46 is displaced 0.8 Å from 

its position when cyanopindolol is bound, in a direction away from the center of the 

receptor. 

 

Discussion 

The synthesis of 7-methylcyanopindolol has allowed further understanding of 

the components that affect ligand efficacy in β1AR. Previous data suggested that the 

rotamer change of Ser2155.46 and a contraction of the ligand binding pocket were 

sufficient to increase the probability of formation of the activated state of the receptor 

(Warne et al., 2011; Warne and Tate, 2013). Therefore ligands that prevented rotamer 

changes of Ser2155.46 and prevented contraction of the orthosteric binding pocket 

should, in theory, have greatly reduced efficacy and may even become inverse 

agonists. Cyanopindolol was described previously as a weak partial agonist of both 

human and turkey β1AR (Baker, 2010a; Baker, 2010b) and so we therefore 

synthesized 7-methylcyanopindolol, with the methyl group in a position predicted to 

dramatically decrease its efficacy. Pharmacological analysis of 7-

methylcyanopindolol showed that it bound with similar high affinity to both turkey 

β1AR and human β2AR, and that there was a marked reduction in efficacy at both 

receptors. However, at the turkey β1AR, 7-methylcyanopindol was an exceedingly 

weak partial agonist whereas for β2AR the ligand acted as a weak partial inverse 
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agonist. Thus the goal was achieved in reducing efficacy, but raised the question of 

why a tiny amount of agonist activity could still be detected at β1AR, whereas 

ICI118551 did not elicit any response. 

In efforts to further understand the molecular mechanism of 7-

methylcyanopindolol, the structure of 7-methylcyanopindolol-bound β1AR was 

determined at 2.4 Å resolution, which is sufficient to determine unambiguously the 

rotamer conformation and precise positioning of serine side chains. Comparison of 

this structure with structures of β1AR bound either to cyanopindolol (Miller-Gallacher 

et al., 2014) or carazolol (Moukhametzianov et al., 2011), both weak partial agonists, 

showed that the binding pocket was actually slightly larger than expected by 0.3-0.5 

Å, as measured between the Cα atoms of Ser2115.42 and Asn3297.39. In addition, there 

was a difference in position of the hydroxyl group of Ser2155.46 in the 7-

methylcyanopindolol-bound structure compared to the cyanopindolol-bound structure 

of 0.8 Å, in a direction away from the ligand, presumably due to the proximity of the 

methyl group of 7-methyl cyanopindolol. Both the increase in size of the binding 

pocket and the outward shift of the hydroxyl group of Ser2155.46 are consistent with 

the dramatic reduction in efficacy of 7-methylcyanopindolol compared to 

cyanopindolol. If an analogous comparison is performed in the structures of β2AR 

bound to the weak partial agonist carazolol (Cherezov et al., 2007) and the inverse 

agonist ICI118551 (Wacker et al., 2010), exactly the same differences are observed, 

i.e. an expansion of the binding pocket of 0.4 Å (measured as above) and a 0.7 Å shift 

of the hydroxyl group of Ser2075.46 (Fig. 7).  

Although Ser2155.46 appears to be a major determinant in defining ligand 

efficacy, two other serine residues have also been implicated by mutagenesis in the 

activation of β-receptors, namely Ser2115.42 and Ser2125.43 (Strader et al., 1989; 
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Liapakis et al., 2000). The orientation of Ser2115.42 has been suggested to correlate 

with decreased efficacy of ligands, based on the comparison of β1AR structures bound 

to 8 different ligands (Warne and Tate, 2013). Structures of β1AR bound to agonists 

and partial agonists, including β1AR bound to cyanopindolol and 7-

methylcyanopindol, invariably have the side chain of Ser2115.42 in a gauche+ rotamer, 

whereas β1AR bound to carazolol and carvedilol have Ser2115.42 in a trans rotamer 

(see Fig. 7A). Thus one possibility to explain the residual agonist activity of 7-

methylcyanopindolol is that the slight destabilization of the H5 interface between H3 

and H4 caused by the gauche+ orientation of the Ser2115.42 side chain is sufficient to 

make the ligand an extremely weak partial agonist. The role of Ser2125.43 in 

determining ligand efficacy is less clear, as it does not make direct contact to the 

ligand, but instead forms a hydrogen bond with Asn3106.55 that may assist in orienting 

the side chain for optimal hydrogen bond formation with full agonists (Warne et al., 

2011). As Asn3106.55 forms van der Waals contacts with the weak partial agonists 

studied here, as opposed to a hydrogen bond with full agonists, then its effect may be 

minimal in determining the efficacy of the weak partial agonists given that different 

rotamers of Asn3106.55 would presumably always be in weak van der Waals contact 

with the ligand. This view is supported by the absence of the Ser2125.43-Asn3106.55 

hydrogen bond in one structure of cyanopindolol-bound β1AR (Miller-Gallacher et 

al., 2014), although it is clearly present in other cyanopindolol-bound structures 

(Warne et al., 2008). 

In considering the factors that dictate the efficacy of a ligand for β1AR, there 

appears to be a hierarchy of factors that have a diminishing effect as you go down the 

list. Firstly, the most important factor is probably the contraction of the binding 

pocket upon agonist binding, which has been observed in all structures bound to full 
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or partial agonists (Warne et al., 2011). Without this contraction, it is unlikely that 

hydrogen bonds would be able to form between the catecholamine moiety of the 

agonist and the side chains of Ser2155.46 and Ser2115.42. Secondly, the rotamer change 

of Ser2155.46 is important as this dictates the difference in binding between a full and 

partial agonist, and allows hydrogen bond formation to the ligand (Warne et al., 

2011). Thirdly, the rotamer change of Ser2115.42, in addition to its defining role in the 

binding of partial agonists, may promote lower levels of activity in antagonists when 

the binding pocket is less likely to contract and Ser2155.46 is less likely to rotate due to 

steric clashes with the ligand (Warne and Tate, 2013). Currently, we do not know 

where in this hierarchy the importance of Ser2125.43 falls. Mutagenesis suggests that 

this is an important residue in determining agonist affinity in β2AR (Strader et al., 

1989) and in the structures of β1AR it usually forms a hydrogen bond with Asn310, 

that in turn forms a strong hydrogen bond to the catecholamine headgroup (or 

equivalent) when agonists bind to the receptor (Warne et al., 2011). As it appears that 

the hydrogen bond is present in the activated state of the β2AR bound to the G protein 

mimic Nb80 (Rasmussen et al., 2011a), it seems likely that ligands which reduce the 

probability of this bond forming will have poor efficacy, although no such ligands 

have been described so far. 

In conclusion, we have demonstrated that a single modification of 

cyanopindolol to make 7-methylcyanopindolol was sufficient to reduce dramatically 

the efficacy of the ligand and the structure of the ligand-receptor complex has 

confirmed the importance of the rotamer conformation of Ser2155.46 in receptor 

activation and inverse agonist activity. The unexpected residual agonist activity of the 

ligand highlights the role of Ser2115.42 in ligand-induced activation of β1AR and that it 
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is not just playing a passive role in increasing ligand affinity. Further work will 

therefore be needed to finally make a high-affinity inverse agonist for β1AR. 

 

Coordinates and structure factors for 7-methylcyanopindolol-bound β1AR have 

been deposited with the Protein Data Bank, PDB ID 5A8E.  
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Figure legends 

 

Figure 1: Structures of β receptor ligands. (A) noradrenaline; (B) isoprenaline; (C) 

carazolol; (D) ICI118551; (E) cyanopindolol; (F) 7-methylcyanopindolol. Portions of 

the structures in blue are regions analogous to those found in noradrenaline. The 

oxymethylene spacer between the ethanolamine backbone and ligand head group that 

prevents contraction of the ligand binding pocket in antagonists is shown in red. 

Noradrenaline and isoprenaline are regarded as full agonists (Baker, 2010a), carazolol 

and cyanopindolol as weak partial agonists (Baker, 2010a) and ICI18551 as an 

inverse agonist (Bond et al., 1995; Azzi et al., 2001) 

 

Figure 2: Synthesis of 7-methylcyanopindolol. Reagents and conditions: (a) benzyl 

bromide, K2CO3, DMF, 65 ºC, 6 h; (b) (i) Methyl azidoacetate, sodium metal, MeOH, 

-8 ºC, 3 h, (ii) xylene, 130 ºC, 18 h; (c) (i) 2N NaOH, EtOH, 90 ºC, 4 h, (ii) 3N HCl 

(aq), rt; (d) (i) SOCl2, Et2O, 0 ºC, 5 h, (ii) NH3, Et2O, -20 ºC, 5 min; (e) H2, 10% 

Pd/C, MeOH, rt, 8 h; (f) POCl3, 1,4-dioxane, 75 ºC, 15 min; (g) (S)-epichlorohydrine, 

NaOH, 5:2 H2O-1,4-dioxane, rt, 16 h; (h) tert-butylamine, 70 ºC, 8 h. 

 

Figure 3: Competition binding curves of ligands to turkey β1AR and human β2AR. 

Inhibition of 3H-CGP12177 binding to (A) CHO-tβ1 cells and (B) CHO-hβ2 cells was 

measured in response to cyanopindolol (filled circles), 7-methylcyanopindolol (open 

circles), carazolol (filled triangles), CGP20712A (open inverted triangles) and 

ICI118551 (stars). Log KD values are given in Table I. Bars to the left of the graphs 

represent total 3H-CGP12177 binding (filled bar) and non-specific binding (hatched 

bar) as determined in the presence of 10 µM propranolol. The concentrations of 3H-
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CGP12177 present were (A) 0.98 nM and (B) 0.53 nM. Data points are the mean ± 

s.e.m. of triplicate determinations and these single experiments are representative of 

(A) 5 and (B) 10 separate experiments. 

 

Figure 4: 3H-cAMP accumulation in whole cells expressing either turkey β1AR or 

human β2AR.	   The	   responses to either cyanopindolol (filled circles), 7-

methylcyanopindolol (open circles), carazolol (filled triangles) or ICI118551 (stars) 

was measured either in (A, B) CHO-tβ1 cells or (C, D) CHO-hβ2 cells. Log EC50 

values are given in Table II and Table III. The inset graph in (A) is a magnified 

portion of the main graph with the y-axis altered to see only the bottom 2000 dpm. 

Bars to the left of the graphs represent basal 3H-cAMP accumulation (filled bar) and 

the response to 10µM isoprenaline (hatched bar). Data points are the mean ± s.e.m. of 

triplicate determinations and these single experiments are representative of 4 separate 

experiments in each case. 

 

Figure 5: CRE-SPAP production in response to 7-methylcyanopindolol and 

cyanopindolol. (A) CHO-tβ1 cells, (B) CHO-hβ2 cells and (C) CHO-CRE-SPAP cells 

(parental cells without transfected receptor) were treated with either cyanopindolol 

(filled circles) or 7-methylcyanopindolol (open circles) and the amount of secreted 

alkaline phosphatase (SPAP) measured. Log EC50 values are given in Table II and 

Table III. Bars to the left of the graphs represent either basal CRE-SPAP production 

in the absence of ligand (filled bar) or the response to 10µM isoprenaline (hatched 

bar). In the parental cell line (C), forskolin was used as the positive control (diagonal 

hatching of bar). Data points are mean ± s.e.m. of triplicate determinations.  These 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on September 18, 2015 as DOI: 10.1124/mol.115.101030

 at A
SPE

T
 Journals on O

ctober 8, 2015
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL#101030	   33	  

single experiments are representative of (A) 8, (B) 8 and (C) 4 separate experiments. 

Error bars are shown, but are smaller than the size of the symbols. 

 

Figure 6: Structure of 7-methylcyanopindolol-bound β1AR. (A) Omit map for the 

ligand binding site. A 2Fo-Fc map was generated where the ligand and the side chains 

of Ser211 and Ser215 were omitted from the model. The contour level is 1.0 sigma 

and the figure was produced using CCP4MG. (B, C) Superposition of the structures of 

β1AR bound to 7-methylcyanopindol (receptor in rainbow coloration and the ligand in 

pink) and cyanopindol (receptor and ligand both grey). The views are either within 

the membrane plane (A, B) or from the extracellular surface (C), with portions of H3 

removed for clarity. The red arrows highlight the different positions of Ser215 in the 

two β1AR structures. The Ballesteros-Weinstein numbers for the residues depicted are 

as follows: D121, 3.32; S211, 5.42; S215, 5.46; N329, 7.39. 

 

Figure 7: Comparison of the orthosteric binding site of β1AR and β2AR bound either 

to carazolol, ICI118551 or 7-methylcyanopindolol. (A) The structure of 7-

methylcyanopindolol-bound  β1AR (rainbow-colored cartoon) was aligned with the 

structure of carazolol-bound β1AR (grey cartoon; PDB code 2YCW) using PyMol 

(RMSD 0.5 Å, 1734 atoms). A stick format is used to depict the ligands and side 

chains (labeled) that interact with ligands via hydrogen bonds (7-

methylcyanopindolol-bound β1AR, carbon atoms in green and hydrogen bonds 

depicted as red dashed lines; carazolol-bound β1AR, carbon atoms in grey and 

hydrogen bonds as blue dashed lines). (B) The structure of ICI118551-bound  β2AR 

(green-colored cartoon; PDB code 3NY8) was aligned with the structure of carazolol-

bound β2AR (brown cartoon; PDB code 2RH1) using PyMol (RMSD 0.4 Å, 1810 
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atoms). A stick format is used to depict the ligands and side chains (labeled) that 

interact with ligands via hydrogen bonds (ICI118551-bound β2AR, carbon atoms in 

green and hydrogen bonds depicted as red dashed lines; carazolol-bound β2AR, 

carbon atoms in grey and hydrogen bonds as blue dashed lines). In both panels, 

oxygen atoms are red and nitrogen atoms are in blue. The Ballesteros-Weinstein 

numbers for the residues depicted are as follows (β1AR and β2AR residues are given 

respectively): D121 & D113, 3.32; S211 & S203, 5.42; S215 & S207, 5.46; N329 & 

N312, 7.39; Y333 and Y316, 7.43. 
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Table I: Log KD values obtained from 3H-CGP12177 whole cell binding in CHO-tβ1 

and CHO-hβ2 cells.  Values represent mean ± s.e.m. of n separate experiments. 

 β1AR β2AR 

Ligand Log KD n Log KD n 

Cyanopindolol -10.46 ± 0.04 6 -10.49 ± 0.01 12 

7-Methylcyanopindolol -10.37 ± 0.03 6 -10.42 ± 0.04 14 

Carazolol -10.23 ± 0.04 5 -10.54 ± 0.04 10 

(±)-Isoprenaline -7.34 ± 0.11 5 -6.57 ± 0.08 8 

ICI118551 -7.17 ± 0.06 5 -9.36 ± 0.07 10 

CGP20712A -7.76 ± 0.05 5 -5.76 ± 0.02 10 
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Table II: CRE-SPAP gene transcription response and 3H-cAMP accumulation in 

ligand-stimulated tβ1AR-CHO cell lines. Cyanopindolol and carazolol stimulated 

concentration responses that were best described by a two-component curve.  Here the 

log EC50 values are given for each component, the percentage of the response 

represented by the first component and the percentage of the total response in relation 

to the isoprenaline stimulation are given.  Values represent mean ± s.e.m. of n 

separate experiments. 

3H-cAMP accumulation 

 Log EC501 Log EC502 % site 1 % iso max n 

Cyanopindolol -10.25 ± 0.02 -7.31 ± 0.09 64.8 ± 2.4 31.8 ± 1.1 4 

7-Methylcyanopindolol -9.76 ± 0.14   2.3 ± 0.3 4 

Carazolol -9.95 ± 0.10 -6.76 ± 0.06 40.2 ± 1.2 22.4 ± 0.9 4 

ICI 118551 No response    4 

      

CRE-SPAP production 

 Log EC501 Log EC502 % site 1 % iso max n 

Cyanopindolol -10.22 ± 0.06 -7.19 ± 0.22 56.1 ± 5.2 40.2 ± 2.4 8 

7-methylcyanopindolol No response    8 

Carazolol -9.74 ± 0.22 -6.66 ± 0.25 28.7 ± 3.2 31.8 ± 3.2 4 
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Table III: CRE-SPAP and 3H-cAMP accumulation assays for β2AR-CHO cell lines. 

Log EC50 values and % isoprenaline maximal responses obtained from 3H-cAMP 

accumulation and CRE-SPAP gene transcription responses in CHO-hβ2 cells. 7-

methylcyanopindolol and ICI118551 stimulated inverse agonist concentration 

responses and thus IC50 values are given with a comparison to the response in relation 

to the basal activity, where basal activity = 100%.  Values represent mean ± s.e.m. of 

n separate experiments. 

 

 

 

3H-cAMP accumulation     

 Log EC50/IC50 % iso max % basal n 

Cyanopindolol -9.86 ± 0.04 8.0 ± 0.9 - 8 

7-Methylcyanopindolol -9.99 ± 0.10  74.5 ± 9.2 8 

Carazolol -10.14 ± 0.09 1.3 ± 0.2 - 8 

ICI 118551 -9.48 ± 0.17  45.3 ± 3.3 7 

     

CRE-SPAP production     

 Log EC50 % iso max % basal n 

Cyanopindolol -9.97 ± 0.05 50.8 ± 3.7 - 8 

7-Methylcyanopindolol No response - - 8 

Carazolol -10.30 ± 0.13 6.0 ± 1.4 - 4 

ICI 118551 No response - - 6 
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Table IV: Data collection and refinement statistics 

 β1AR-7-methyl-
cyanopindolol 

Number of crystals 4 

Space group P21221 

Unit cell parameters  

a, b, c (Å) 

α, β, γ (°) 

 

53.0, 61.8, 95.5 

90, 90, 90 

Data Processing  

Resolution (Å) 37.8 – 2.4 

Rmerge1 0.161 (0.704) 

<I/σ(I)> 1 8.2 (1.9) 

Completeness (%)1 98.4 (98.3) 

Multiplicity1 4.8 (4.9) 

Wilson B factor (Å2) 27.7 

Refinement  

Total number of reflections 11942 

Total number of atoms 2436 

Number of waters 26 

Number of lipid molecules 5 

Number of sodium ions 2 

Rwork
2,4 0.217 (0.294) 

Rfree
3,4 0.248 (0.285) 

r.m.s. deviation bonds (Å) 0.007 

r.m.s. deviation angles (o) 1.29 
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Mean atomic B factor (Å2) 39.35 

Estimated coordinate error (Å) 0.223 

Ramachandran plot favoured (%)5 98.94 

Ramachandran plot outliers (%)5 0 

 

Footnotes. 

1 Values in parentheses are for the highest resolution bin (2.53-2.4 Å) 

2 Number of reflections used to calculate Rwork : 11942 

3 Number of reflections from a randomly selected subset used to calculate Rfree :602 

4 Values in parentheses are for the highest resolution bin for refinement (2.46-2.4 Å) 

5 Figures obtained using MolProbity. 
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