23 research outputs found
DNA Vaccines against Dengue Virus Type 2 Based on Truncate Envelope Protein or Its Domain III
Two DNA vaccines were constructed encoding the ectodomain (domains I, II and III) of the DENV2 envelope protein (pE1D2) or only its domain III (pE2D2), fused to the human tissue plasminogen activator signal peptide (t-PA). The expression and secretion of recombinant proteins was confirmed in vitro in BHK cells transfected with the two plasmids, detected by immunofluorescence or immunoprecipitation of metabolically labeled gene products, using polyclonal and monoclonal antibodies against DENV2. Besides, results reveal that the ectodomain of the E protein can be efficiently expressed in vivo, in a mammalian system, without the prM protein that is hypothesized to act as a chaperonin during dengue infection. Balb/c mice were immunized with the DNA vaccines and challenged with a lethal dose of DENV2. All pE1D2-vaccinated mice survived challenge, while 45% of animals immunized with the pE2D2 died after infection. Furthermore, only 10% of pE1D2-immunized mice presented some clinical signs of infection after challenge, whereas most of animals inoculated with the pE2D2 showed effects of the disease with high morbidity degrees. Levels of neutralizing antibodies were significantly higher in pE1D2-vaccinated mice than in pE2D2-immunized animals, also suggesting that the pE1D2 vaccine was more protective than the pE2D2
A Dynamic Landscape for Antibody Binding Modulates Antibody-Mediated Neutralization of West Nile Virus
Neutralizing antibodies are a significant component of the host's protective response against flavivirus infection. Neutralization of flaviviruses occurs when individual virions are engaged by antibodies with a stoichiometry that exceeds a required threshold. From this “multiple-hit” perspective, the neutralizing activity of antibodies is governed by the affinity with which it binds its epitope and the number of times this determinant is displayed on the surface of the virion. In this study, we investigated time-dependent changes in the fate of West Nile virus (WNV) decorated with antibody in solution. Experiments with the well-characterized neutralizing monoclonal antibody (MAb) E16 revealed a significant increase in neutralization activity over time that could not be explained by the kinetics of antibody binding, virion aggregation, or the action of complement. Additional kinetic experiments using the fusion-loop specific MAb E53, which has limited neutralizing activity because it recognizes a relatively inaccessible epitope on mature virions, identified a role of virus “breathing” in regulating neutralization activity. Remarkably, MAb E53 neutralized mature WNV in a time- and temperature-dependent manner. This phenomenon was confirmed in studies with a large panel of MAbs specific for epitopes in each domain of the WNV envelope protein, with sera from recipients of a live attenuated WNV vaccine, and in experiments with dengue virus. Given enough time, significant inhibition of infection was observed even for antibodies with very limited, or no neutralizing activity in standard neutralization assays. Together, our data suggests that the structural dynamics of flaviviruses impacts antibody-mediated neutralization via exposure of otherwise inaccessible epitopes, allowing for antibodies to dock on the virion with a stoichiometry sufficient for neutralization
DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus
A plasmid DNA directing transcription of the infectious full-length RNA genome of Kunjin (KUN) virus in vivo from a mammalian expression promoter was used to vaccinate mice intramuscularly. The KUN viral cDNA encoded in the plasmid contained the mutation in the NS1 protein (Pro-250 to Leu) previously shown to attenuate KUN virus in weanling mice. KUN virus was isolated from the blood of immunized mice 3-4 days after DNA inoculation, demonstrating that infectious RNA was being transcribed in vivo; however, no symptoms of virus-induced disease were observed. By 19 days postimmunization, neutralizing antibody was detected in the serum of immunized animals. On challenge with lethal doses of the virulent New York strain of West Nile (WN) or wild-type KUN virus intracerebrally or intraperitoneally, mice immunized with as little as 0.1-1 μg of KUN plasmid DNA were solidly protected against disease. This finding correlated with neutralization data in vitro showing that serum from KUN DNA-immunized mice neutralized KUN and WN viruses with similar efficiencies. The results demonstrate that delivery of an attenuated but replicating KUN virus via a plasmid DNA vector may provide an effective vaccination strategy against virulent strains of WN virus