274 research outputs found

    GENE EXPRESSION DURING IMIDACLOPRID-INDUCED HORMESIS IN GREEN PEACH APHID

    Get PDF
    Imidacloprid-induced hormesis in the form of stimulated reproduction has previously been reported in green peach aphid, Myzus persicae. Changes in gene expression accompanying this hormetic response have not been previously investigated. In this study, expression of stress response (Hsp60), dispersal (OSD, TOL and ANT), and developmental (FPPS I) genes were examined for two generations during imidacloprid-induced reproductive stimulation in M. persicae. Global DNA methylation was also measured to test the hypothesis that changes in gene expression are heritable. At hormetic concentrations, down-regulation of Hsp60 was followed by up-regulation of this gene in the subsequent generation. Likewise, expression of dispersal-related genes and FPPS I varied with concentration, life stage, and generation. These results indicate that reproductive hormesis in M. persicae is accompanied by a complex transgenerational pattern of up- and down-regulation of genes that likely reflects trade-offs in gene expression and related physiological processes during the phenotypic dose-response. Moreover, DNA methylation in second generation M. persicae occurred at higher doses than in first-generation aphids, suggesting that heritable adaptability to low doses of the stressor might have occurred

    Forest cover enhances natural enemy diversity and biological control services in Brazilian sun coffee plantations

    Get PDF
    Published VersionLandscape structure and crop management directly affect insect communities, which can influence agriculturally relevant ecosystem services and disservices. However, little is known about the effect of landscape structure and local factors on pests, natural enemies, and biological control services in the Neotropics. We investigated how environmental conditions at local and landscape levels affect Leucoptera coffeella (insect pest), social wasps (natural enemies), and the provision of biological control services in 16 Brazilian coffee plantations under different crop management and landscape contexts. We considered microclimatic conditions, coffee plantation size, and management intensity at the local level; and forest cover, landscape diversity, and edge density at the landscape level. Pest population, wasp communities, and biocontrol services were monitored in wet and dry seasons when L. coffeella outbreaks occur. We found that the amount of forest in the surrounding landscape was more important for explaining patterns than the local environment, landscape diversity, or landscape configuration. In both seasons, L. coffeella was negatively affected by forest cover, whereas biological control and richness and abundance of social wasps increased with increasing forest cover at multiple spatial scales. Moreover, biological control was positively correlated with wasp abundance during pest outbreaks, suggesting that social wasps are important natural enemies and provide pest control services within coffee plantations. We provide the first empirical evidence that forest cover is important for the maintenance of social wasp diversity and associated pest control services in a Brazilian coffee-producing region

    IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2004. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 46 (2004): 1029-1058.A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0–24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0–26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0–12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4–26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the 14C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue)

    Active restoration accelerates the carbon recovery of human modified-tropical forests

    Get PDF
    More than half of all tropical forests are degraded by human impacts, leaving them threatened with conversion to agricultural plantations and risking substantial biodiversity and carbon losses. Restoration could accelerate recovery of aboveground carbon density (ACD), but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report a long-term comparison of ACD recovery rates between naturally regenerating and actively restored logged tropical forests. Restoration enhanced decadal ACD recovery by more than 50%, from 2.9 to 4.4 megagrams per hectare per year. This magnitude of response, coupled with modal values of restoration costs globally, would require higher carbon prices to justify investment in restoration. However, carbon prices required to fulfill the 2016 Paris climate agreement [40to40 to 80 (USD) per tonne carbon dioxide equivalent] would provide an economic justification for tropical forest restoration

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation
    corecore