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INSECTS, INSECTICIDES AND HORMESIS: EVIDENCE AND 
CONSIDERATIONS FOR STUDY

G. Christopher Cutler � Nova Scotia Agricultural College

� Insects are ubiquitous, crucial components of almost all terrestrial and fresh water
ecosystems. In agricultural settings they are subjected to, intentionally or unintentionally,
an array of synthetic pesticides and other chemical stressors. These ecological underpin-
nings, the amenability of insects to laboratory and field experiments, and our strong
knowledgebase in insecticide toxicology, make the insect-insecticide model an excellent
one to study many questions surrounding hormesis. Moreover, there is practical impor-
tance for agriculture with evidence of pest population growth being accelerated by insec-
ticide hormesis. Nevertheless, insects have been underutilized in studies of hormesis.
Where hormesis hypotheses have been tested, results clearly demonstrate stimulatory
effects on multiple taxa as measured through several biological endpoints, both at indi-
vidual and population levels. However, many basic questions are outstanding given the
myriad of chemicals, responses, and ecological interactions that are likely to occur.

Keywords: insects; hormesis; hormoligosis; sublethal insecticide exposure; pest resurgence

INSECT EXPOSURE TO INSECTICIDES

Management of insect pests the past 70 years has been achieved main-
ly through application of synthetic pesticides. Since the discovery of the
insecticidal properties of DDT by Paul Müller in 1939, hundreds of insec-
ticidal compounds have been developed, accompanied by a relatively
steady increase in insecticide use. Insecticide use has waned in some
crops with the recent advent of transgenic varieties that express insectici-
dal toxins (Benbrook 2004; Cattaneo et al. 2006), but synthetic insecticide
use remains high in most commodities. Approximately 560 million kg of
insecticide were used globally in 2001, over three-quarters of which was
for agricultural purposes (Kiely et al. 2004). The Environmental
Protection Agency has approved the use of about 225 insecticidal active
ingredients, and there are typically multiple formulations of each used in
a variety of applications (Yu 2008).

Insect populations in agriculture and forestry are thus potentially
exposed to great amounts of pesticide. Exposures may occur through
direct contact (i.e. topical application of the spray), ingestion or residual
contact. Unborn progeny or gametes may be affected through exposed
adults. Although many individuals will be killed by these compounds, oth-
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ers will be subject to a number of sublethal effects (Croft and Brown
1975; Haynes 1988; Stark and Banks 2003). Effects depend on a number
of factors but dose is a key determinant of elicited response. In a field sit-
uation, the pesticide dose to which the insect is exposed will differ great-
ly over space and time. Growers attempt to apply sprays evenly to their
crops, but even a small breeze can cause drift, resulting in deposition of
variable amounts of solution to plants throughout a field. Volatilization of
pesticides, which is particularly prominent during applications on dry,
hot days, can significantly reduce the amount of product that remains at
the target. Even within a plant penetration of the spray through the
canopy can vary significantly, whether comparing the top vs. bottom of
the plant, or the upper vs. lower surface of a leaf. The addition of time
will further alter the exposure. Microbial and chemical degradation in or
on soil and foliage are important processes that change the toxicity of an
applied solution, and these vary with temperature, moisture, pH and
adsorption. Similarly, the rate of insecticide photodegradation will vary
with light intensity. While these processes usually render the insecticide
less effective, in some cases metabolites of the parent compound may be
more toxic to the target insect (e.g. Nauen et al. 1998). Systemic insecti-
cides that are applied to soil or seeds are expected to reach concentra-
tions in the leaves that are lethal to insects, but sublethal concentrations
are present in the plant during accumulation and degradation of the tox-
icant. Further, concentrations of systemic insecticide can vary through a
plant, as well as in old and new foliage over time (Olson et al. 2004). Thus,
although growers try to apply pesticides evenly at concentrations intend-
ed to kill target pests, many biotic and abiotic processes will spatially and
temporally change the dose of pesticide to which an insect is actually
exposed in the field. Very often these will be a range of sublethal con-
centrations.

HORMESIS AND INSECT PEST MANAGEMENT

Although the study of dose-response relationships has traditionally
been guided by the threshold and/or linear non-threshold models, the
hormetic dose-response model – a biphasic model characterized by low-
dose stimulation and high-dose inhibition – is now widely recognized as a
general, real and reproducible biological phenomenon (Calabrese
2005a; 2005b; 2010). Hormesis has been observed in a myriad of single-
cell and multicellular organisms, and for many biological measures
including growth, longevity, numerous metabolic and molecular process-
es, cognitive function and immune response (Calabrese and Baldwin
2003a; Calabrese and Baldwin 2003b; Calabrese and Blain 2005).
Hormetic effects are not limited to chemical stressors, such as pesticides
and heavy metals, and may manifest following mild temperature stress
(Luckey 1968; Stolzing et al. 2006; Galbadage and Hartman 2008; Gomez
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et al. 2009), induced radiation (Luckey 1991; Azzam et al. 1996;
Feinendegen 2005), reduced caloric intake or exercise (Le Bourg and
Rattan 2008; Mattson and Calabrese 2010). Further, the hormetic dose-
response appears to be the most fundamental dose-response, outper-
forming the threshold and linear non-threshold models in head-to-head
comparisons using numerous criteria (Calabrese and Baldwin 2003a;
Calabrese and Blain 2005). Hormesis has attracted attention from a vari-
ety of disciplines, particularly in risk assessment for chemical and radia-
tion protection (Luckey 1991; Calabrese and Cook 2005; Sanders 2010)
and in the biomedical sciences (Le Bourg and Rattan 2008; Mattson and
Calabrese 2010). As one might predict, evolutionary biologists have also
become interested in the phenomenon, questioning whether hormesis of
a trait is adaptive, resulting in increased fitness for genotypes exhibiting
the response, maladaptive (i.e. associated with decreased fitness), or
selectively neutral (Forbes 2000; Parsons 2001; Mattson 2009).

Insect toxicology and the study of insecticide dose-response have a
rich scientific history. In the very first issue of the Annual Review of
Entomology in 1956, no less than six papers examined topics in insecticide
chemistry (Martin 1956), insecticide mode of action (Kearns 1956),
insecticide resistance (Hoskins and Gordon 1956), plant-insecticide
residues (Gunther and Blinn 1956), application techniques (Brann 1956)
and impacts of pesticides on arthropod populations (Ripper 1956). This
trend continues today with hundreds of papers published every year on
these very same subjects and more in emerging related fields. However,
studies in insect toxicological with pest and beneficial insects have tradi-
tionally focused mostly on high doses and lethal effects, i.e. LD50/LC50
data, as have toxicology studies in other disciplines (Calabrese 2005a).
Further, although the importance of low dose insecticide exposures and
sublethal effects have long been realized (Ripper 1956; Croft and Brown
1975; Haynes 1988; Stark and Banks 2003), these are generally presented
within the context of deleterious impacts of low doses on insect fecundi-
ty, longevity, behavior and similar endpoints. The alternative response –
insecticide-induced stimulation of biological processes via hormetic
mechanisms – has received far less attention.

Why is it important to study hormesis in insects? I would suggest that
there are at least two broad reasons: (1) the pursuit of basic knowledge
on hormesis; and (2) practical importance in pest management. In the
first case, it is only over the past decade or so that hormesis has been wide-
ly accepted in scientific circles and a large number of fundamental ques-
tions concerning the phenomenon remain to be answered. Insects are, of
course, tremendously useful scientific models. They are complex multi-
cellular organisms, and their widespread diversity and abundance, crucial
ecological status, amenability to cheap and rapid mass production in con-
trolled environments, and the lack regulatory/ethical hurdles concern-
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ing experimentation make them attractive experimental subjects in toxi-
cology and in an array of other biological disciplines. Great effort has
been dedicated to the study of insect toxicology, biochemistry, physiolo-
gy, molecular biology, genetics, reproduction and behavior, and this work
serves as an excellent foundation for basic dose-response investigations.
The genomes of many insect species have been mapped completely or in
part (NCBI 2012) and the functions of a large number of insect genes are
known. Thus, opportunities abound to study the basic workings of
hormesis using insects as model organisms.

In the second case, the study of hormesis in insects is important
because of its potential implications in agriculture and pest management
(Morse 1998; Cohen 2006; Cutler et al. 2009; Guedes et al. 2009). It has
long been noted that following an insecticide application, there is some-
times a surge in insect or mite population growth at a rate greater than
what would have been observed without the application. This may be
observed in the primary pest targeted with the insecticide (known as ‘pest
resurgence’), or in a secondary pest species that is initially of lesser eco-
nomic importance (known as a ‘secondary pest outbreak’) (Ripper 1956;
Hardin et al. 1995). These surges are usually attributed to natural enemy
disturbance. In such a scenario the application of a non-selective insecti-
cide reduces both the pest and natural enemy populations, but the natu-
ral enemies are slower to recover. The reasons for this are mainly two-
fold: (1) natural enemy population growth lags as their food supply (the
pest) recovers; and (2) natural enemies, particularly parasitoids, are often
more susceptible to insecticides than their host and thus are slower to
recover from toxicological effects (Croft and Brown 1975). Free of its nat-
ural enemies the pest population is able to quickly exceed its previous
level of infestation.

Natural enemy decline is without question an important cause of pest
resurgence, but it is usually the default or assumed cause. In reality,
empirical data to support such claims is usually lacking (Hardin et al.
1995) and there are other possible mechanisms for an insect outbreak fol-
lowing an insecticide application. These include reduced competition
with other herbivores, changes in pest behavior, altered host-plant nutri-
tion, increased attractiveness of the plant host, or direct stimulation of
the pesticide on the insect, factors that may operate singly or in tandem
to give additive of synergistic effects (Hardin et al. 1995; Cohen 2006).
Experiments do indeed demonstrate that hormesis could be an alternate
or additional mechanism contributing to the pest resurgence phenome-
non. Such resurgences could not only result in increased crop/commod-
ity damage, but could lead to additional pesticide treatments, potentially
exacerbating non-target impacts, insecticide resistance development and
environmental contamination. The problem might be especially relevant
in insecticide-resistant pest populations where a typical field rate might
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expose individuals to the ‘hormetic-zone’ of the dose-response curve,
boosting reproduction of resistant populations and increasing the fre-
quency of the resistance alleles (Guedes et al. 2010).

EVIDENCE OF HORMESIS IN INSECTS

Cohen (2006) provided discussion and a list of papers from the liter-
ature demonstrating pesticide-induced hormesis-like effects in arthro-
pods. Table 1 and the discussion below include many of the works cited
by Cohen (2006) plus additional citations, but focuses on studies report-
ing stimulatory effects of insecticides on insects; reports of stimulatory
effects of pesticides on mites (Acari) are cited by Cohen (2006) and are
generally not considered here. Also not discussed here are a number of
recent biomedical articles reporting hormesis in Drosophila spp. when
exposed to various temperature, oxidative, chemical and radiation stres-
sors (e.g. Le Bourg 2010).

Pest resurgences following pesticide applications were reported
from the beginning of the insecticide era and even then it was suspect-
ed that a favorable influence of the pesticide on arthropods may in part
explain these resurgences (Ripper 1956; Peterson 1963). However, an
awareness of the hormetic dose-response phenomenon seems to have
been lacking among entomologists and no toxicological explanation for
such occurrences was provided. In one of the earliest papers, Sun
(1945) observed that while high concentrations of rotenone dust were
toxic to adult female bean aphids, Aphis rumicis, females treated with
low concentrations of the poison produced more young than control
aphids. Subsequently, sublethal doses of dieldrin were found to increase
longevity of Drosophila melanogaster (Knutson 1955) and increase weight
and fecundity of house flies, Musca domestica (Afifi and Knutson 1956).
Other early studies with M. domestica found stimulated reproduction
when this insect was exposed to sublethal does of various insecticides
(Kilpatrick and Schoof 1956; Ouye and Knutson 1957; Hunter et al.
1958). Kuenen (1958) found that when the weevil Sitophilus granarius
was fed wheat spiked with sublethal concentrations of DDT, about 20%
more offspring were produced compared to unexposed weevils.
Kuenen pondered whether stimulation in insects exposed to low-doses
of insecticide could be a universal phenomenon. He stated that given
the widely different physiological mechanisms of poisons, one “... can-
not possibly expect a general rule to exist for all toxicants”, but then
admits that “... a parallel with many other toxicants and DDT forces
itself upon us when we see that low doses have a stimulating effect (on
reproduction), while high doses kill the organism” (Kuenen 1958).
Others reported that DDT stimulated oviposition in beneficial insect
predators (Fleschner and Scriven 1957; Atallah and Newson 1966) and
a parasitic wasp (Grosch and Valcovic 1967). In 1968, Luckey published
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ěk
 a

n
d 

N
ov

ák
 (

19
77

)
(H

et
er

op
te

ra
; f

ir
e 

bu
g)

co
nt

in
ue

d…

7

Cutler: Insects, insecticides, hormesis

Published by ScholarWorks@UMass Amherst, 2014



Insects, insecticides, hormesis

161

T
A

B
L

E
 1

.C
on

ti
n

ue
d

T
ar

ge
t 

in
se

ct
C

h
em

ic
al

 s
tr

es
so

r1
(s

ub
le

th
al

 d
os

es
)

R
ep

or
te

d 
ef

fe
ct

s
R

ef
er

en
ce

R
hy

no
co

ri
s 

ku
m

ar
ii 

en
do

su
lf

an
In

cr
ea

se
d 

fe
cu

n
di

ty
 a

n
d 

lo
n

ge
vi

ty
G

eo
rg

e 
an

d 
A

m
br

os
e 

(1
99

9)
(H

et
er

op
te

ra
; r

ed
uv

iid
 p

re
da

to
r)

Sc
ir

to
th

ri
ps

 c
itr

i 
di

co
fo

l, 
fl

uv
al

in
at

e,
 f

or
m

et
an

at
e,

 
St

im
ul

at
ed

 r
ep

ro
du

ct
io

n
M

or
se

 a
n

d 
Z

ar
eh

 (
19

91
)

(T
h

ys
an

op
te

ra
; c

it
ru

s 
th

ri
ps

)
m

al
at

h
io

n
Si

to
ph

ilu
s 

gr
an

ar
iu

s 
D

D
T

St
im

ul
at

ed
 r

ep
ro

du
ct

io
n

K
eu

n
en

 (
19

58
)

(C
ol

eo
pt

er
a;

 s
to

re
d 

pr
od

uc
t 

w
ee

vi
l)

Si
to

ph
ilu

s 
ze

am
ai

s 
de

lt
am

et
h

ri
n

Po
pu

la
ti

on
 g

ro
w

th
G

ue
de

s 
et

 a
l.

(2
01

0)
(C

ur
cu

lio
n

id
ae

; m
ai

ze
 w

ee
vi

l)
Sp

od
op

te
ra

 li
tto

ra
lis

 
ca

rb
ar

yl
, m

et
h

yl
 p

ar
at

h
io

n
, 

St
im

ul
at

ed
 o

vi
po

si
ti

on
E

sa
ac

 e
t a

l. 
(1

97
2)

(L
ep

id
op

te
ra

; E
gy

pt
ia

n
 c

ot
to

n
 le

af
w

or
m

)
de

lt
am

et
h

ri
n

de
lt

am
et

h
ri

n
E

n
h

an
ce

d 
n

um
be

r 
of

 o
va

ri
ol

es
, 

K
an

ao
ka

 e
t a

l.
(1

99
6)

ov
ip

os
iti

on
 a

nd
 li

fe
 s

pa
n 

of
 a

du
lt 

fe
m

al
es

Su
pp

ut
iu

s 
ci

nc
tic

ep
s 

pe
rm

et
h

ri
n

R
ed

uc
ed

 p
re

-o
vi

po
si

ti
on

 p
er

io
d,

 in
cr

ea
se

d 
Z

an
un

ci
o 

et
 a

l.
(2

00
3,

 2
00

5)
(H

et
er

op
te

ra
; p

re
da

to
ry

 s
ti

n
kb

ug
)

su
rv

iv
al

 a
n

d 
w

ei
gh

t
Tr

ib
ol

iu
m

 c
as

ta
ne

um
az

ad
ir

ac
h

ti
n

E
n

h
an

ce
d 

su
rv

iv
al

, a
du

lt
 e

m
er

ge
n

ce
, 

R
am

ac
h

an
dr

an
 e

t a
l. 

(1
98

8)
(C

ol
eo

pt
er

a;
 r

ed
 f

lo
ur

 b
ee

tl
e)

la
rv

al
 w

ei
gh

t 
an

d 
fe

cu
n

di
ty

az
ad

ir
ac

h
ti

n
St

im
ul

at
ed

 e
st

er
as

e 
pr

od
uc

ti
on

M
uk

h
er

je
e 

et
 a

l. 
(1

99
3)

Za
br

ot
es

 s
ub

fa
sc

ia
tu

s 
Te

tr
ad

en
ia

 r
ip

ar
ia

ex
tr

ac
t

In
cr

ea
se

d 
ov

ip
os

iti
on

 a
nd

 a
du

lt 
em

er
ge

nc
e

W
ea

ve
r 

et
 a

l.
(1

99
2)

(C
ol

eo
pt

er
a;

 M
ex

ic
an

 b
ea

n
 w

ee
vi

l)

1 
E

n
to

m
op

at
h

og
en

s 
an

d 
in

se
ct

ic
id

al
 b

ot
an

ic
al

 e
xt

ra
ct

s 
ar

e 
in

cl
ud

ed
.

2 D
ro

so
ph

ila
 m

el
an

og
as

te
r

h
as

 b
ee

n
 u

se
d 

ex
te

n
si

ve
ly

 a
s 

a 
m

od
el

 t
o 

st
ud

y 
h

or
m

es
is

 in
 b

io
m

ed
ic

al
 r

es
ea

rc
h

. O
n

ly
 o

n
e 

ci
ta

ti
on

 is
 m

en
ti

on
ed

 h
er

e 
as

 t
h

e 
m

ai
n

 f
oc

us
 is

ag
ri

cu
lt

ur
al

ly
 b

as
ed

 p
es

ti
ci

de
-in

du
ce

d 
h

or
m

es
is

.

8

Dose-Response: An International Journal, Vol. 11 [2014], Iss. 2, Art. 5

https://scholarworks.umass.edu/dose_response/vol11/iss2/5



his well-known article on insect hormoligosis, where he showed that
weight gain of house crickets, Acheta domesticus, was stimulated when
exposed to sublethal concentrations of 14 different insecticides (Luckey
1968). This was one of the first papers to propose a mechanism for the
low-dose stimulation. Luckey (1968) suggested that insecticides in
minute quantities might act as noncompetitive inhibitors of polymeric
allosteric enzymes, shifting the equilibria toward the more active of two
species of the polymeric molecule and resulting in the formation of
other more active enzymes in the system.

Despite these intriguing papers, study of insect hormesis/hor-
moligosis was slow to catch on, or was dismissed. For example, Moriarty
(1969) suggested that that the results presented by Luckey (1968) were
of “doubtful validity”. There were some reports in the 1970s describing
spikes in arthropod populations following applications of pesticides in
the field (e.g. Dittrich et al. 1974), and a few others that more closely
explored low-dose stimulation by insecticides in the laboratory (Esaac et
al. 1972; Honěk and Novák 1977), but the decade was relatively
uneventful in terms of hormesis investigations. However, in the 1980s
interest in the stimulatory effects of insecticides on insects picked up.
Chelliah et al. (1980) showed that topical applications insecticides
increased reproductive outputs and increased longevity of brown plan-
thopper, Nilaparvata lugens, but that response varied depending on the
dose and the active ingredient. Insecticide-induced stimulation of
growth and/or reproduction was later observed in the flour beetle,
Tribolium castaneum (Ramachandran et al. 1988), and in several aphid
species (Neubauer et al. 1983; Gordon and McEwen 1984; Jackson and
Wilkins 1985; Lowery and Sears 1986a). Smirnoff (1983) observed
spruce budworm, Choristoneura fumiferana, larvae that survived
organophosphorus and carbamates insecticide treatments developed
into heavier pupae and contained more calcium and total proteins as
compared to untreated larvae. In the early 1990s and years following,
study of hormesis/hormoligosis accelerated with biological stimulation
in insects due to low doses of insecticides being reported in many
species across several orders, including thrips, wasps, woodlice, cock-
roaches, collembolans, and multiple species of bugs, beetles, flies, and
moths (Table 1).

Several things are apparent about agricultural insect hormesis
research to date.

(i) Study of hormesis/hormoligosis per se in insects has increased, par-
ticularly in the past decade as the terms and phenomenon have be-
come more familiar to scientists (Table 2). This pattern parallels the
general ballooning interest in hormesis and the exponential increase
in the number of peer-review studies citing the term hormesis
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(E. Calabrese, pers. comm.).1 However, in many instances biological
stimulation due to low doses of insecticide is not reported as horme-
sis, with no mention of the terms “hormesis” or “hormoligosis” ap-
pearing in these articles (e.g. Ge et al. 2010; Hu et al. 2010; Martoub et
al. 2011). This emphasizes that the hormesis concept is not compre-
hended by all insect toxicologists, even those who may be currently
working on the problem.

(ii) Documentation of hormesis in insects spans across many taxonomic
orders, occurring in ametabolous, hemimetabolous and
holometablous groups, supporting arguments that hormesis is a gen-
eral phenomenon (Calabrese 2010).

(iii)Effects are seen when insects are exposed to stressors as eggs, larvae,
pupae or adults, and usually stimulatory effects will carryover across
life stage (but see Nascarella et al. 2003). This inter-life stage carry-
over effect is intriguing considering the massive disassembly and
restructuring of the insect DNA blueprint during metamorphosis in
holometabolous taxa. Inter-generation effects over time have been
less studied.

(iv) Many different insecticidal active ingredients can elicit hormetic
effects, again illustrating the generality of the phenomenon.
However, most studies to date have focused on insecticidal neurotox-
ins. The occurrence and nature of hormesis due to, for example,

Insects, insecticides, hormesis
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1 Hormesis Update 2010. International Hormesis Society Conference Hormesis:
Implications for Toxicology, Medicine, and Risk Assessment. University of Massachusetts,
Amherst MA, 27 April 2010

TABLE 2. Citations of hormoligosis and hormesis with insect- or pesticide-related terms.1

Citations per decade

Search Terms 1960-69 1970-79 1980-89 1990-99 2000-12 Totals

Hormoligosis2 2 0 4 4 16 26
Hormesis AND Coleoptera 0 0 0 0 3 3
Hormesis AND Diptera 0 0 0 0 3 3
Hormesis AND Hemiptera 0 0 0 0 1 1
Hormesis AND Heteroptera 0 0 0 0 5 5
Hormesis AND Lepidoptera 0 0 0 0 2 2
Hormesis AND Insect 0 0 1 2 18 21
Hormesis AND insecticide 0 0 1 7 21 29
Hormesis AND pesticide 0 0 3 2 35 40
Hormesis AND Drosophila3 0 0 2 1 63 66

1 From the SciVerse Scopus database.
2 Use of this term has generally, but not exclusively, been confined to insects and arthropods
3 Predominantly biomedical research.
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insect growth regulators, pathogens or parasites that occur in agri-
cultural systems has received little study.

(v) Relative concentrations that induce stimulation in insects are quite
variable and sometimes seem to deviate from the quantitative fea-
tures typically observed in a hormetic dose response (Calabrese
2010). Mainly, in some cases we see reports of insecticide-induced
stimulation with concentrations well above the No Observable Effects
Concentration (NOEC).

(vi) The large majority of studies report some sort of reproductive stimu-
lation, although some authors have measured influences on other
toxicological endpoints such as weight and some physiological or
behavioral measures. Few have considered biochemical, hormonal or
molecular changes in insects during hormesis, although this is likely
to change in the coming years (e.g. Ge et al. 2010; Hu et al. 2010; Yu
et al. 2010).

(vii)With the exception of a few field and semi-field studies (Chelliah et al.
1980; Lowery and Sears 1986b; Morse and Zareh 1991), almost all
work documenting hormesis in insects has been done in the lab, de-
spite important implications for insecticide-induced hormesis in the
field.

INSECT HORMESIS SEMANTICS

As covered by Rozman and Doull (2003), the concept of hormesis has
evolved substantially over the years and a number of terms have been
used to describe the hormetic dose-response (Calabrese and Baldwin
2002). In literature related to insects, mainly three terms have been used:
(1) hormesis; (2) hormoligosis; and (3) pesticide-mediated homeostatic
modulation. The definition and principles of hormesis have been thor-
oughly covered by others (e.g. Calabrese and Baldwin 2002; e.g. Rozman
and Doull 2003; Calabrese 2005a; Mattson and Calabrese 2010) and will
not be repeated here. The terms ‘hormesis’ and ‘hormoligosis’ have been
compared previously (Morse 1998; Cohen 2006; Guedes et al. 2009), and
Cohen (2006) proposed the additional concept of ‘pesticide-mediated
homeostatic modulation’. Here I provide a more in-depth examination of
the terms ‘hormoligosis’ and ‘pesticide-mediated homeostatic modula-
tion’, as they relate to hormesis.

Hormoligosis

The terms ‘hormoligosis’ and ‘hormoligant’ were coined by T.D.
Luckey in 1955 at the First International Conference on Antibiotics in
Agriculture (Luckey 1956; 2008). The hormoligosis concept originally,
and erroneously, encompassed all substances that were stimulatory at

11

Cutler: Insects, insecticides, hormesis

Published by ScholarWorks@UMass Amherst, 2014



small doses, i.e. not only stressors or toxic substances, with a hormoligant
being the entity that excites or stimulates in small quantities. It was noted
that the stimulation was more pronounced in individuals that were under
stress and it seems that the definition was subsequently modified bearing
this in mind. Luckey (1963) described hormoligosis as a situation where
“... minute quantities of any stressing agent (chemical, physical, psycho-
logical or social) would be stimulatory to an organism under a wide vari-
ety of conditions, whereas larger quantities of stressing agent would be
harmful to the same organism.” Here the principle of low-dose stimula-
tion and high-dose inhibition becomes apparent. In 1968, the paper Insect
Hormoligosis was published (Luckey 1968) and in describing hormoligosis
it is stated that “.... subharmful quantities of many stress agents may be
helpful when presented to organisms in suboptimal environments”. This
definition for hormoligosis seems to have been the most enduring,
though ironically most contemporary authors using the term have tend-
ed to ignore the criterion of “suboptimal environment” (Cohen 2006;
Guedes et al. 2009). It has been suggested that processes initiated by a
stimulatory signal followed by homeostatic overcompensation in the
other direction could give hormoligotic responses, being delineated from
hormetic responses that are initiated by an inhibitory signal followed by
homeostatic overcompensation (Rozman and Doull 2003), although
broadly defined hormesis could apply to both scenarios (Calabrese
2010). Luckey’s definition suggests that hormoligosis applies to situations
where an organism is subjected to stress but no stimulation is observed
until a small amount of a second stressor is presented to the system.

From an evolutionary perspective, hormoligosis can be seen as a small
(but not too small) dose of stress optimizing the fitness of an individual
to deal with subsequent stresses (Rozman and Doull 2003). It is not clear
in this definition whether or not the effect of the first stress acts additive-
ly or synergistically with the second, or if stimulation can occur with
either stressor alone if its dose was increased. Differentiating between
these potential interactive effects is important since it has been shown
that mixtures of stressors at low doses can produce hormetic responses
and that the magnitude of stimulation can be roughly predicted in mix-
tures with knowledge of the concentration–response relationships of the
individual stressors (Belz et al. 2008). That is, is hormoligosis simply a
form of mixture hormesis, or is it something different? Since not all stres-
sors may induce hormesis (Belz et al. 2008), the later may be true. This
should be a key research question for insect toxicologists and toxicolo-
gists in general with an interest in hormesis. At present, except where
conceptual and mechanistic differences between hormesis and hor-
moligosis are specified (e.g. Rozman and Doull 2003; Cohen 2006;
Guedes et al. 2009), these terms have generally been treated synony-
mously the insect toxicology literature.
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Pesticide-mediated homeostatic modulation

Cohen (2006) argued that hormesis does not apply in situations
where stimulatory effects are observed in an arthropod pest which had
neither been targeted nor controlled by a pesticide. He distinguished
‘acaricides’, stressors targeting mites, from ‘insecticides’, chemicals that
are exclusively toxic to insects, and ‘pesticides’, chemicals that affect both
types of arthropods. Examples are presented mainly as cases where stim-
ulation of mite reproduction is seen following exposure to pesticides such
as DDT, carbaryl, insecticidal pyrethroids or imidacloprid. In terms of
their use patterns these compounds are not considered acaricides and
are not intended to control mite pests. But mites and insects often co-
habit the same environment and in some cases when the aforementioned
compounds are used to manage insect pests, mite population surges have
been observed. Cohen (2006) rightfully points out that to establish
hormesis, dose-response endpoints such as LD or LC values should first
be clearly established. He contends that stimulatory effects observed with
pesticides that are non-toxic to arthropods at high doses (e.g. DDT stim-
ulation of two-spotted spider mite, Tetranychus urticae, reproduction in the
field) cannot be attributed to hormesis and proposed pesticide-mediated
homeostatic modulation as a broader term to include both hormesis and
stimulatory effects of pesticides on non-target pests.

However, pesticide-mediated homeostatic modulation is a dubious
concept. Cohen’s (2006) arguments are not toxicologically driven, but
rather are semantic in nature and rest mainly on differentiating stimula-
tory effects in ‘target’ vs. ‘non-target’ arthropods due to exposure to
‘insecticides’ vs. ‘acaricides’. Such anthropocentric distinctions are of no
matter to the underlying mechanisms that cause observed stimulations.
Rather, it is the toxicological nature of the dose-response that is funda-
mental in delineating a response as hormetic. The central tenant of toxi-
cology is Paracelsus’ maxim that any chemical is potentially toxic (poiso-
nous) and it is only the dose that renders it so. Many common substances
are not considered insecticides per se, but they can kill insects depending
on the dose.

Indeed, several of the compounds that Cohen (2006) suggests are
non-acaricidal can in fact be lethal to mites. For example, DDT, methyl
parathion and permethrin are not considered acaricides or practical pes-
ticides for management of T. urticae, but they undoubtedly may kill T.
urticae depending on the dose (e.g. Attiah and Boudreaux 1964;
Ayyappatii et al. 1997). A dose-response of T. urticae to either of these
chemicals may therefore be established, along with the possibility of high-
dose inhibition and low-dose stimulation as hormesis. Hormesis may very
well apply to situations where a pest insect is not controlled by a pesticide
if lethal or “high” doses exceed field rates. For instance, several
researchers have observed that M. persicae reproduction was greatly stim-

G. C. Cutler

166
13

Cutler: Insects, insecticides, hormesis

Published by ScholarWorks@UMass Amherst, 2014



Insects, insecticides, hormesis

167

ulated by field rates of azinphosmethyl (Peterson 1963; Gordon and
McEwen 1984; Lowery and Sears 1986a; 1986b), but this compound is
also clearly lethal to this insect (Lowery 1985; Raman 1988). Further
doubt of the validity of the pesticide-mediated homeostatic modulation
concept is raised when it is suggested that it and hormesis are different
but that the underlying physiological/biochemical mechanisms are pre-
sumably identical (Cohen 2006).

It seems that “hormesis” should suffice in lieu of the terms “hor-
moligosis” and “pesticide-mediated homeostatic modulation”, at least to
explain stimulatory responses encountered thus far in insect toxicology.
Pesticide-mediated homeostatic modulation does not propose a dose-
response or mechanistic underpinning any different from hormesis. It is
a concept based on semantics and is not biologically demarcated from
hormesis. Hormoligosis is a term with strong historical significance in
insect toxicology and one that continues to be used by some authors
when describing insecticide-induced stimulation in insects. By definition
it may be delineated from hormesis in that the insect (or any organ-
ism/cell) is to be experiencing sub-optimal conditions prior to any
observed biological stimulation by a low dose of insecticide (or any stres-
sor). This may in fact be a case of mixture hormesis, where two stressors
are employed with or without a temporal separation in exposure.

CONSIDERATIONS FOR STUDY

Hormesis is a burgeoning field of study. However, despite the poten-
tial implications of hormesis-rooted stimulations in pest management,
and the opportunities insect-insecticide models can offer in basic investi-
gations, the phenomenon has received relatively scant attention from
insect toxicologists. Cohen (2006) offered several important suggestions
for further research and below I briefly describe additional problems that
researchers may wish to consider in future hormesis investigations. Some
problems are specific to entomology, but others may be of interest in
other disciplines and with alternative models.

General experimental design

Most experiments exploring chemical-induced hormesis in insects
have suffered from the same shortcoming as similar studies in other dis-
ciplines, mainly that too few doses are used, no or few sub-NOEC are
used, too many high doses are used, there is inadequate replication, and
there is no time component (Calabrese and Baldwin 1998; Calabrese
2005b). When examining stimulatory effects of insecticides on insects,
insect toxicologists have usually chosen 3-4 test concentrations below the
LC50, e.g. LC5, LC10 or LC25, but little or no rationale for their treat-
ment choices is given. In some cases reports of hormesis are a posteriori
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and the experimenter may have had no knowledge of the phenomenon.
However, where there is a priori knowledge of hormesis, experiments that
aim to study stimulatory or sublethal effects of insecticides on insects
should incorporate many replicates and doses, including several in the
theoretical hormetic zone below the NOEC (but see below), derived from
previous experiments if necessary (Cutler et al. 2009).

Insecticide-plant-insect interactions

Insecticides have been shown to alter plant photosynthesis, respira-
tion, transpiration, and metabolism of nitrogen, carbohydrates and min-
erals (NAS 1968), which may make the plant more attractive and suscep-
tible to attack by phytophagous insects. When conducting dose-
response/hormesis experiments using insects and plants, it is therefore
important to be mindful of the exposure route and consider whether the
observed stimulatory effects are due to direct interaction of the insecti-
cide with the insect, or some indirect influence of the compound on the
plant tissue on which the insect is feeding (Cohen 2006). Neubauer et al.
(1983) found that stimulated growth and reproduction in the aphid A. cit-
ricola when exposed to leaves systemically treated with aldicarb, but not
when this compound was administered in an artificial diet, suggesting the
hormetic effects observed may have been plant mediated. Similarly,
Ferguson and Chapman (1993) found that carbaryl applications in pota-
to caused M. persicae population surges and after excluding reductions in
natural enemies as a reason for this, concluded that stimulation in aphid
reproduction was due to the insecticide treatment. However, they also
noted in laboratory experiments that carbaryl increased total nitrogen
content in leaves, which was correlated with increased nymph produc-
tion. It has been suggested that any agent that disturbs nitrogen metabo-
lism in plant tissues will favor increased survival and abundance of herbi-
vores feeding on those tissues (White 1984).

Insecticides may also change physical characteristics of a plant that
may increase their attractiveness to insects (NAS 1968). Such phenome-
na should not be misinterpreted as hormesis. For example, Hari and
Mahal (2008a) reported that application of sub-lethal concentrations of
the insecticides acephate and cypermethrin reduced cotton height, plant
spread and upper canopy leaf area, and this resulted in increased ovipo-
sition of Helicoverpa armigera (cotton bollworm).

Stimulatory concentrations

Meta-analyses reveal that hormetic stimulation typically peaks at con-
centrations below the NOEC (Calabrese and Baldwin 1998; 2001;
Calabrese 2005a; 2005b). However, in studies with insects, stimulation is
sometimes reported at concentrations well above the NOEC. Stimulation
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above control levels following exposure to concentrations in the LC25
range is not uncommon (e.g. Sota et al. 1998; Bao et al. 2009), and stimu-
lation at the LC50 has been observed (Esaac et al. 1972; Chelliah et al.
1980; Sota et al. 1998). Examination of variances in response among treat-
ed (e.g. insects exposed to an insecticide LC25 concentration) and con-
trol groups in these studies suggests that individuals within and across
treatment groups respond homogenously, so results are not skewed by a
few individuals that have abnormally high reproductive outputs. It is
important to keep in mind that in a field situation, although reproduc-
tion in some individuals may be stimulated by exposure to a LC25 insec-
ticide concentration, 25% of the population would be killed by this expo-
sure, possibly negating stimulatory effects on the population as a whole.
Nonetheless, apparent insecticide-induced stimulatory effects at concen-
trations well above NOEC levels is an important deviation from the
hormetic dose-response defined by Calabrese (2005a; 2005b) and is
worth investigating further.

The nature of the stressor

The occurrence of hormesis may not be absolute among all chemicals
that induce a toxicological response (e.g. Belz et al. 2008). This may be
true in particular for agents that induce hormesis via direct stimulation
of a receptor mediated pathway. Even where the molecular structure of
chemicals is highly similar, the ability of these different chemicals to
induce hormesis may differ (Calabrese 2010). It has sometimes been
observed that not all insecticides in low doses (not necessarily doses
around the NOEC) induce stimulation. For example, Chelliah et al.
(1980) found that while reproductive stimulation occurred in N. lugens at
LC25 and LC50 doses of methyl parathion (an organophosphorus insec-
ticide) and decamethrin (a synthetic pyrethroid insecticide), respectively,
no stimulation was found when the insect was exposed to perthane (a
chlorinated hydrocarbon) at several similar concentrations below the
LC50. Neubauer et al. (1983) observed statistically significant hormetic
effects in spirea aphids, Aphis citricola, exposed to sublethal concentra-
tions of aldicarb, but not with ethiofencarb or dimethoate. When
exposed to 1/10 LC50 concentrations of several insecticides, endosulfan
increased fecundity and longevity of Rhynocoris kumari, where the other
compounds tested decreased fecundity and longevity (George and
Ambrose 1999). Similarly, LC30 concentrations of endosulfan resulted in
reduced developmental times for Heliocoverpa armigera but the same con-
centrations of spinosad, chlorpyriphos, acephate and cypermethrin had
deleterious impacts on the insect’s development (Hari and Mahal
2008b). Experiments should easily be able to determine whether such
results are simply contingent on the experimental design (i.e. picking the
best suite of doses to detect potential hormesis), or whether hormetic
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dose-response curves vary with chemical mode of action or structure. In
contrast to neurotoxins, hormesis in insects exposed to low doses of
insect growth regulators or entomopathogens has been less studied
(Ortiz-Urquiza et al. 2010).

Peak-dip-peak phenomenon?

Luckey (1963) studied the response of nematodes under heat stress
to various concentrations of antibiotic. He noted that with several antibi-
otics there were two peaks of stimulation whereas normal response or
inhibition of survival was found at concentrations between the peaks.
Similar results were seen in some experiments with crickets exposed to
insecticides, with two peaks of stimulated weight gain observed, along
with intermediate doses resulting in reduced or no significant weight gain
(Luckey 1968). In our own experiments we too have seen this peak-dip-
peak phenomenon (Cutler et al. 2009; Mohan et al. unpublished). We
have found its occurrence to be real and reproducible, and variable with
exposure scenario, dose selection and life stage. Stimulation of different
molecular pathways at different doses may be at play, but this needs to be
explored further. Smooth J-shaped or inverted-U shaped hormetic curves
may not always be observed in insects during stimulatory responses to low
levels of stress.

Fitness tradeoffs

It has been suggested that hormesis results from a temporary reallo-
cation of resources, which will be followed by a measurable fitness trade-
off in some other biological process (Forbes 2000). There is evidence of
such tradeoffs in the insect-hormesis literature. For example, Sial and
Brunner (2010) found that although Choristoneura rosaceana (oblique-
banded leafroller) pupae and adult weights significantly increased fol-
lowing larval exposure to sublethal concentrations of pyriproxyfen, sub-
sequent fecundity and fertility of the insect was reduced at these doses.
Enhanced pupation was observed in queen blowfly following exposure of
maggots to cadmium but this was followed by reduced adult emergence
from pupae, reflecting stage specific hormesis (Nascarella et al. 2003).
Fujiwara et al. (2002) observed that although egg laying was stimulated in
diamondback moths exposed to LC25 treatments, eggs laid were smaller
and offspring survival was reduced, resulting in no change in reproduc-
tive effort compared to untreated insects. Thus, tradeoffs are apparent
but seem to vary depending on the exposure regime. It would be worth-
while determining if there are consistent trends in how tradeoffs manifest
under different exposure regimes and among different taxa, and how
these exposures affect biological fitness occur across generations
(Widarto et al. 2007). Stepping beyond traditional hormesis endpoint
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assessments for insects (e.g. fecundity, fertility, longevity) is encouraged.
Entomologists should look more closely at molecular, physiological, mor-
phological, behavioral and population markers for hormesis or counter
tradeoffs.

Hormesis in insecticide resistant populations

Insecticide resistance continues to be a major issue for the manage-
ment of insect pests in food production (Denholm et al. 1998), and the
control of disease vectors (Hemingway and Ranson 2000; Labbé et al.
2007). Study of hormesis within the context of insecticide resistance is of
interest. As Guedes et al. (2010) suggested, if field doses of an insecticide
do not control an insecticide resistant population, such sublethal expo-
sures might very well boost their population growth through stimulated
reproduction and increase the frequency of resistance alleles within the
population, exacerbating the resistance problem. Insecticide-induced
hormesis therefore may be important for the evolution of pesticide resist-
ance and design of resistance management programs (Guedes et al.
2010), but this has not been well studied.

Hormesis and beneficial insects

Mass rearing and management of beneficial insects is a multi-billion
dollar industry. Insects are reared for pollination, honey and honey bee
hive products, biological control, sterile insect release programs, pet
food, human food, biological and medical research, silk, and many other
end uses. Potential beneficial implications for hormesis for human health
have been well documented (Mattson and Calabrese 2010), and we might
be able to apply hormetic principles during mass culture of insects to, for
example, improve insect longevity, immunity or reproductive outputs.
For example, Wojda et al. (2009) found that exposure of Galleria mellonel-
la – a common experimental model and source of food for animals – to
mild heat shock for 30 minutes decreased the insect’s susceptibility to a
common entomopathogenic pathogenic fungus, possibly due to
increased expression of antimicrobial peptides and higher antifungal and
lysozyme activities. Guedes et al. (2009) showed that reproductive outputs
of the beneficial predatory bug Podisus distinctus increased and genera-
tion time was reduced with exposure to a single sublethal dose of perme-
thrin. Similar results were seen with the insect predator Supputius cincti-
ceps (Zanuncio et al. 2005). Long-term experiments should be pursued to
determine if these types of hormesis-based observations can translate into
economic benefits during mass culturing of beneficial insects.
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Field studies

Although hormesis has been implicated as a potentially important
factor in insect pest resurgences and resistance development (Guedes et
al. 2009, 2010), the prevalence of the phenomenon in agricultural set-
tings is generally not known, and very few agricultural studies have tested
insect hormesis hypotheses under field or greenhouse conditions. This is
ironic since observed pesticide-induced resurgences in the field were
often the principle driver for initial studies of insect hormoligosis and
hormesis (Dittrich et al. 1974; Chelliah et al. 1980; Lowery and Sears
1986b; Morse and Zareh 1991). Field experiments with specific pests,
crops and pesticide exposure regimes are needed to determine if and
under what circumstances insect hormesis occurs. This will clarify
whether or not pesticide-induced insect hormesis has economic reper-
cussions for crop production and pest management.

ACKNOWLEDGEMENTS

I thank the Natural Sciences and Engineering Research Council
(NSERC) for funding my research on hormesis, and comments from an
anonymous reviewer that helped improve the manuscript.

REFERENCES

Abdullah NMM and Joginder S. 2004. Effect of insecticides on longevity of the whitefly, Bemisia tabaci
(Gennadius) on cotton. Univ Aden J Nat Appl Sci 8:261-268

Abivardi C, Weber DC, and Dorn S. 1998. Effects of azinphos-methyl and pyrifenox on reproductive
performance of Cydia pomonella L. (Lepidoptera: Tortricidae) at recommended rates and lower
concentrations. Annals Appl Biol 132:19-33

Afifi SED and Knutson H. 1956. Reproductive potential, longevity, and weight of house flies which
survived one insecticidal treatment. J Econ Entomol 49:310-313

Atallah YH and Newson LL. 1966. Ecological and nutritional studies on Coleomegilla maculata De Geer
(Coleoptera: Coccinelidae). III. The effects of DDT, toxaphene, and endrin on the reproduc-
tive and survival potentials. J Econ Entomol 59:1181-1187

Attiah HH and Boudreaux HB. 1964. Population dynamics of spider mites influenced by DDT. J Econ
Entomol 57:53-57

Ayyappatii R, Witicowski JF, and Higley LG. 1997. Ovipositional responses of two species of spider
mites (Acari: Tetianychidae) to sublethal concentrations of permethrin and methyl parathion
on corn. Environ Entomol 26:489-496

Azzam EI, de Toledo SM, Raaphorst GP, and Mitchel REJ. 1996. Low-dose ionizing radiation decreas-
es the frequency of neoplastic transformation to a level below the spontaneous rate in C3H
10T1/2 cells. Radiat Res 146:369-373

Ball H and Su PP. 1979. Effect of sublethal dosages of carbofuran and carbaryl on fecundity and
longevity of the female western corn rootworm. J Econ Entomol 72:873-876

Bao HB, Liu SH, Gu JH, Wang XZ, Liang XL, and Liu ZW. 2009. Sublethal effects of four insecticides
on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Manag
Sci 65:170-174

Bayley M and Baatrup E. 1996. Pesticide uptake and locomotor behaviour in the woodlouse: An
experimental study employing video tracking and 14C-labelling. Ecotoxicol 5:35-45

Belz RG, Cedergreen N and Sorensen H. 2008. Hormesis in mixtures - Can it be predicted? Sci Total
Environ 404:77-87

G. C. Cutler

172
19

Cutler: Insects, insecticides, hormesis

Published by ScholarWorks@UMass Amherst, 2014



Benbrook CM. 2004. Genetically engineered crops and pesticide use in the United States: the first
nine years. BioTech InfoNet, Technical Paper No. 7 (available at http://organic.insightd.net/
reportfiles/Full_first_nine.pdf)

Brann JL. 1956. Apparatus for application of insecticides. Annu Rev Entomol 1:241-260
Calabrese EJ. 2005a. Toxicological awakenings: the rebirth of hormesis as a central pillar of toxicol-

ogy. Toxicol Appl Pharmacol 204:1-8
Calabrese EJ. 2005b. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamen-

tal dose response model in the toxicological sciences. Environ Poll 138:378-411
Calabrese EJ. 2010. Hormesis is central to toxicology, pharmacology and risk assessment. Hum Exp

Toxicol 29:249-261
Calabrese EJ and Baldwin LA. 1998. Hormesis as a biological hypothesis. Environ Health Pers

106:357-362
Calabrese EJ and Baldwin LA. 2001. Hormesis: A generalizable and unifying hypothesis. Crit Rev

Toxicol 31:353-424
Calabrese EJ and Baldwin LA. 2002. Applications of hormesis in toxicology, risk assessment and

chemotherapeutics. Trends Pharmacol Sci 23:331-337
Calabrese EJ and Baldwin LA. 2003a. The hormetic dose-response model is more common than the

threshold model in toxicology. Toxicol Sci 71:246-250
Calabrese EJ and Baldwin LA. 2003b. Toxicology rethinks its central belief. Nature 421:691-692
Calabrese EJ and Blain R. 2005. The occurrence of hormetic dose response in the toxicological lit-

erature, the hormesis database: an overview. Toxicol Appl Pharmacol 202:289-301
Calabrese EJ and Cook RR. 2005. Hormesis: how it could affect the risk assessment process. Human

Exp Toxicol 24:265-270
Cattaneo MG, Yafuso C, Schmidt C, Huang CY, Rahman M, Olson C, Ellers-Kirk C, Orr BJ, Marsh SE,

Antilla L, Dutilleu P, and Carriere Y. 2006. Farm-scale evaluation of the impacts of transgenic
cotton on biodiversity, pesticide use, and yield. Proc Nat Acad Sci 103:7571-7576

Chelliah S, Fabellar LT, and Heinrichs EA. 1980. Effect of sub-lethal doses of three insecticides on
the reproductive rate of the brown planthopper, Nilaparvata lugens, on rice. Environ Entomol
9:778-780

Chelliah S and Heinrichs EA. 1980. Factors affecting insecticide-induced resurgence of the brown
planthopper, Nilaparvata lugens, on rice. Environ Entomol 9:773-777

Cohen E. 2006. Pesticide-mediated hemeostatic modulation in arthropods. Pestic Biochem Physiol
85:21-27

Croft BA and Brown AWA. 1975. Response of arthropod natural enemies to insecticides. Annu Rev
Entomol 20:285-335

Cutler GC, Ramanaidu K, Astatkie T, and Isman MB. 2009. Green peach aphid, Myzus persicae
(Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imida-
cloprid and azadirachtin. Pest Manag Sci 65:205-209

Cutler GC, Scott-Dupree CD, Tolman JH, and Harris CR. 2005. Acute and sublethal toxicity of noval-
uron, a novel chitin synthesis inhibitor, to Leptinotarsa decemlineata (Coleoptera :
Chrysomelidae). Pest Manag Sci 61:1060-1068

Delpuech JM, Bardon C, and Boulétreau M. 2005. Increase of the behavioral response to kairomones
by the parasitoid wasp Leptopilina heterotoma surviving insecticides. Arch Environ Contam Toxicol
49:186-191

Denholm I, Cahill M, Dennehy TJ, and Horowitz AR. 1998. Challenges with managing insecticide
resistance in agricultural pests, exemplisfied by the whitefly Bemisia tabaci. Phil Trans R Soc
Lond B 353:1757-1767

Dittrich V, Streibert P, and Bathe PA. 1974. An old case reopened: mite stimulation by insecticide
residues. Environ Entomol 3:534-540

Esaac EG, EI-Gogary S, Abdel-Fatah MS, and Ali AM. 1972. Effect of carbaryl, methyl parathion, and
dieldrin on egg production and percent pupation of the Egyptian cotton leafworm, Spodoptera
littoralis (Boisd.). J Appl Entomol 71:263-70

Feinendegen LE. 2005. Evidence for beneficial low level radiation effects and radiation hormesis.
Brit J Radiol 78:3-7

Ferguson JS and Chapman RK. 1993. Factors involved in carbaryl-induced population buildups of
Myzus persicae (Sulzer) (Homoptera, Aphididae) on potato. J Agricult Entomol 10:51-64

Fleschner CA and Scriven GT. 1957. Effect of soil-type and DDT on ovipositional response of Chrysopa
californica (Coq.). J Econ Entomol 50:221-222

Insects, insecticides, hormesis

173
20

Dose-Response: An International Journal, Vol. 11 [2014], Iss. 2, Art. 5

https://scholarworks.umass.edu/dose_response/vol11/iss2/5



Forbes VE. 2000. Is hormesis an evolutionary expectation? Funct Ecol 14:12-24
Fujiwara Y, Takahashi T, Yoshioka T, and Nakasuji F. 2002. Changes in egg size of the diamondback

moth Plutella xylostella (Lepidoptera : Yponomeutidae) treated with fenvalerate at sublethal
doses and viability of the eggs. Appl Entomol and Zool 37:103-109

Galbadage T and Hartman PS. 2008. Repeated temperature fluctuation extends the life span of
Caenorhabditis elegans in a daf-16-dependent fashion. Mech Ageing Dev 129:507-514

Ge L-Q, Wu J-C, Zhao K-F, Chen Y, and Yang G-Q. 2010. Induction of Nlvg and suppression of Nljhe
gene expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females and males
exposed to two insecticides. Pestic Biochem Physiol 98:279-288

George PJE and Ambrose DP. 1999. Insecticidal impact on the post-embryonic development of
Rhynocoris kumarii Ambrose and Livingstone (Het., Reduviidae). J Appl Entomol 123:498-401

Gomez FH, Bertoli CI, Sambucetti P, Scannapieco AC, and Norry FM. 2009. Heat-induced hormesis
in longevity as correlated response to thermal-stress selection in Drosophila buzzatii. J Therm Biol
34:17-22

Gordon PL and McEwen FL. 1984. Insecticide-stimulated reproduction of Myzus persicae, the green
peach aphid (Homoptera: Aphididae). Can Entomol 116:7783-784

Goudey-Perribre F, Dahmani F, Perribre C, Brousse-Gamy P, and Menez A. 1997. Enhancement of
oocyte growth in the cockroach Blaberus cranizfer by a scorpion toxin, charybdotoxin. Life Sci
60:199-205

Grosch DS and Valcovic LR. 1967. Chlorinated hydrocarbon insecticides are not mutagenic in Bracon
hebetor tests. J Econ Entomol 60:1177-1179

Guedes RNC, Magalhaes LC, and Cosme LV. 2009. Stimulatory sublethal response of a generalist
predator to permethrin: hormesis, hormoligosis, or homeostatic regulation? J Econ Entomol
102:170-176

Guedes NMP, Tolledo J, Corrêa AS, and Guedes RNC. 2010. Insecticide-induced hormesis in an insec-
ticide-resistant strain of the maize weevil, Sitophilus zeamais. J Appl Entomol 134:142-148

Gunther FA and Blinn RC. 1956. Persisting insecticide residues in plant materials. Annu Rev Entomol
1:167-180

Hardin MR, Benrey B, Coll M, Lamp WO, Roderick GK, and Barbosa P. 1995. Arthropod pest resur-
gence: an overview of potential mechanisms. Crop Prot 14:3-18

Hari NS and Mahal MS. 2008a. Sub-lethal influences of different insecticides on oviposition prefer-
ence of Helicoverpa armigera (Hubner) (Lepidoptera : Noctuidae) on cotton in relation to
altered plant morphology. Int J Pest Manag 54:181-187

Hari NS and Mahal MS. 2008b. Effect of repeated sub-lethal applications of different insecticides on
egg laying preference by Helicoverpa armigera (Hubner) on cotton. Pestic Res J 20:95-98

Haynes KF. 1988. Sublethal effects of neurotoxic insecticides on insect behavior. Annu Rev Entomol.
33:149-168

Hemingway J and Ranson H. 2000. Insecticide resistance in insect vectors of human disease. Annu
Rev Entomol 45:371-39
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