10,290 research outputs found
Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms
Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled legitimate interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a threedimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using windmills to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1oC over land installations. In contrast, surface cooling exceeding 1oC is computed over ocean installations, but the validity of simulating the impacts of windmills by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate windmills. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors
Toward a First-Principles Calculation of Electroweak Box Diagrams
We derive a Feynman-Hellmann theorem relating the second-order nucleon energy
shift resulting from the introduction of periodic source terms of
electromagnetic and isovector axial currents to the parity-odd nucleon
structure function . It is a crucial ingredient in the theoretical study
of the and box diagrams that are known to suffer from
large hadronic uncertainties. We demonstrate that for a given , one only
needs to compute a small number of energy shifts in order to obtain the
required inputs for the box diagrams. Future lattice calculations based on this
approach may shed new light on various topics in precision physics including
the refined determination of the Cabibbo-Kobayashi-Maskawa matrix elements and
the weak mixing angle.Comment: Version to appear in PR
Sum Spectral Efficiency Maximization in Massive MIMO Systems: Benefits from Deep Learning
This paper investigates the joint data and pilot power optimization for
maximum sum spectral efficiency (SE) in multi-cell Massive MIMO systems, which
is a non-convex problem. We first propose a new optimization algorithm,
inspired by the weighted minimum mean square error (MMSE) approach, to obtain a
stationary point in polynomial time. We then use this algorithm together with
deep learning to train a convolutional neural network to perform the joint data
and pilot power control in sub-millisecond runtime, making it suitable for
online optimization in real multi-cell Massive MIMO systems. The numerical
result demonstrates that the solution obtained by the neural network is
less than the stationary point for four-cell systems, while the sum SE loss is
in a nine-cell system.Comment: 4 figures, 1 table. Accepted by ICC 2019. arXiv admin note: text
overlap with arXiv:1901.0362
Joint Power Allocation and User Association Optimization for Massive MIMO Systems
This paper investigates the joint power allocation and user association
problem in multi-cell Massive MIMO (multiple-input multiple-output) downlink
(DL) systems. The target is to minimize the total transmit power consumption
when each user is served by an optimized subset of the base stations (BSs),
using non-coherent joint transmission. We first derive a lower bound on the
ergodic spectral efficiency (SE), which is applicable for any channel
distribution and precoding scheme. Closed-form expressions are obtained for
Rayleigh fading channels with either maximum ratio transmission (MRT) or zero
forcing (ZF) precoding. From these bounds, we further formulate the DL power
minimization problems with fixed SE constraints for the users. These problems
are proved to be solvable as linear programs, giving the optimal power
allocation and BS-user association with low complexity. Furthermore, we
formulate a max-min fairness problem which maximizes the worst SE among the
users, and we show that it can be solved as a quasi-linear program. Simulations
manifest that the proposed methods provide good SE for the users using less
transmit power than in small-scale systems and the optimal user association can
effectively balance the load between BSs when needed. Even though our framework
allows the joint transmission from multiple BSs, there is an overwhelming
probability that only one BS is associated with each user at the optimal
solution.Comment: 16 pages, 12 figures, Accepted by IEEE Trans. Wireless Commu
Joint Pilot Design and Uplink Power Allocation in Multi-Cell Massive MIMO Systems
This paper considers pilot design to mitigate pilot contamination and provide
good service for everyone in multi-cell Massive multiple input multiple output
(MIMO) systems. Instead of modeling the pilot design as a combinatorial
assignment problem, as in prior works, we express the pilot signals using a
pilot basis and treat the associated power coefficients as continuous
optimization variables. We compute a lower bound on the uplink capacity for
Rayleigh fading channels with maximum ratio detection that applies with
arbitrary pilot signals. We further formulate the max-min fairness problem
under power budget constraints, with the pilot signals and data powers as
optimization variables. Because this optimization problem is non-deterministic
polynomial-time hard due to signomial constraints, we then propose an algorithm
to obtain a local optimum with polynomial complexity. Our framework serves as a
benchmark for pilot design in scenarios with either ideal or non-ideal
hardware. Numerical results manifest that the proposed optimization algorithms
are close to the optimal solution obtained by exhaustive search for different
pilot assignments and the new pilot structure and optimization bring large
gains over the state-of-the-art suboptimal pilot design.Comment: 16 pages, 8 figures. Accepted to publish at IEEE Transactions on
Wireless Communication
Systematic {\em ab initio} study of the phase diagram of epitaxially strained SrTiO
We use density-functional theory with the local-density approximation to
study the structural and ferroelectric properties of SrTiO under misfit
strains. Both the antiferrodistortive (AFD) and ferroelectric (FE)
instabilities are considered. The rotation of the oxygen octahedra and the
movement of the atoms are fully relaxed within the constraint of a fixed
in-plane lattice constant. We find a rich misfit strain-induced phase
transition sequence and is obtained only when the AFD distortion is taken into
account. We also find that compressive misfit strains induce ferroelectricity
in the tetragonal low temperature phase only whilst tensile strains induce
ferroelectricity in the orthorhombic phases only. The calculated FE
polarization for both the tetragonal and orthorhombic phases increases
monotonically with the magnitude of the strains. The AFD rotation angle of the
oxygen octahedra in the tetragonal phase increases dramatically as the misfit
strain goes from the tensile to compressive strain region whilst it decreases
slightly in the orthorhombic (FO4) phase. This reveals why the polarization in
the epitaxially strained SrTiO would be larger when the tensile strain is
applied, since the AFD distortion is found to reduce the FE instability and
even to completely suppress it in the small strain region. Finally, our
analysis of the average polar distortion and the charge density distribution
suggests that both the Ti-O and Sr-O layers contribute significantly to the FE
polarization
Fermi liquid theory of ultra-cold trapped Fermi gases: Implications for Pseudogap Physics and Other Strongly Correlated Phases
We show how Fermi liquid theory can be applied to ultra-cold Fermi gases,
thereby expanding their "simulation" capabilities to a class of problems of
interest to multiple physics sub-disciplines. We introduce procedures for
measuring and calculating position dependent Landau parameters. This lays the
ground work for addressing important controversial issues: (i) the suggestion
that thermodynamically, the normal state of a unitary gas is indistinguishable
from a Fermi liquid (ii) that a fermionic system with strong repulsive contact
interactions is associated with either ferromagnetism or localization; this
relates as well to He and its p-wave superfluidity.Comment: 4 pages, 2 figures, revised versio
An approximation theory for the identification of linear thermoelastic systems
An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures
Thermostat for non-equilibrium multiparticle collision dynamics simulations
Multiparticle collision dynamics (MPC), a particle-based mesoscale simulation
technique for com- plex fluid, is widely employed in non-equilibrium
simulations of soft matter systems. To maintain a defined thermodynamic state,
thermalization of the fluid is often required for certain MPC variants. We
investigate the influence of three thermostats on the non-equilibrium
properties of a MPC fluid under shear or in Poiseuille flow. In all cases, the
local velocities are scaled by a factor, which is either determined via a local
simple scaling approach (LSS), a Monte Carlo-like procedure (MCS), or by the
Maxwell-Boltzmann distribution of kinetic energy (MBS). We find that the
various scal- ing schemes leave the flow profile unchanged and maintain the
local temperature well. The fluid viscosities extracted from the various
simulations are in close agreement. Moreover, the numerically determined
viscosities are in remarkably good agreement with the respective theoretically
predicted values. At equilibrium, the calculation of the dynamic structure
factor reveals that the MBS method closely resembles an isothermal ensemble,
whereas the MCS procedure exhibits signatures of an adi- abatic system at
larger collision-time steps. Since the velocity distribution of the LSS
approach is non-Gaussian, we recommend to apply the MBS thermostat, which has
been shown to produce the correct velocity distribution even under
non-equilibrium conditions.Comment: 12 pages, 5 figures in Phys. Rev. E, 201
- …