158 research outputs found

    An architecture to manage security services for cloud applications

    Get PDF
    The uptake of virtualization and cloud technologies has pushed novel development and operation models for the software, bringing more agility and automation. Unfortunately, cyber-security paradigms have not evolved at the same pace and are not yet able to effectively tackle the progressive disappearing of a sharp security perimeter. In this paper, we describe a novel cyber-security architecture for cloud-based distributed applications and network services. We propose a security orchestrator that controls pervasive, lightweight, and programmable security hooks embedded in the virtual functions that compose the cloud application, pursuing better visibility and more automation in this domain. Our approach improves existing management practice for service orchestration, by decoupling the management of the business logic from that of security. We also describe the current implementation stage for a programmable monitoring, inspection, and enforcement framework, which represents the ground technology for the realization of the whole architecture

    Environmental induced renormalization effects in quantum Hall edge states

    Full text link
    We propose a general mechanism for renormalization of the tunneling exponents in edge states of the fractional quantum Hall effect. Mutual effects of the coupling with out-of-equilibrium 1/f noise and dissipation are considered both for the Laughlin sequence and for composite co- and counter-propagating edge states with Abelian or non-Abelian statistics. For states with counter-propagating modes we demonstrate the robustness of the proposed mechanism in the so called disorder-dominated phase. Prototypes of these states, such as \nu=2/3 and \nu=5/2, are discussed in detail and the rich phenomenology induced by the presence of a noisy environment is presented. The proposed mechanism justifies the strong renormalizations reported in many experimental observations carried out at low temperatures. We show how environmental effects could affect the relevance of the tunneling excitations, leading to important implications in particular for the \nu=5/2 case.Comment: 14 pages, 4 figure

    Hybrid quantum thermal machines with dynamical couplings

    Get PDF
    Quantum thermal machines can perform useful tasks, such as delivering power, cooling, or heating. In this work, we consider hybrid thermal machines, that can execute more than one task simultaneously. We characterize and find optimal working conditions for a three-terminal quantum thermal machine, where the working medium is a quantum harmonic oscillator, coupled to three heat baths, with two of the couplings driven periodically in time. We show that it is possible to operate the thermal machine efficiently, in both pure and hybrid modes, and to switch between different operational modes simply by changing the driving frequency. Moreover, the proposed setup can also be used as a high-performance transistor, in terms of output–to–input signal and differential gain. Owing to its versatility and tunability, our model may be of interest for engineering thermodynamic tasks and for thermal management in quantum technologies

    Respiratory and non-respiratory outcomes of bronchopulmonary dysplasia in adolescents: A systematic review

    Get PDF
    Background: There is lack of evidence synthesis on the global consequences of bronchopulmonary dysplasia (BPD) in adolescence. Aim: Assess the impact of bronchopulmonary dysplasia on respiratory and non-respiratory outcomes in adolescents.Methods: A systematic review of studies assessing the outcomes of adolescents aged 10 to 19 years-old with BPD was conducted. We independently screened studies published until 6th March 2023 in PubMed (R) and Scopus (R) databases. Data on methodologic design, sample descriptive and findings were extracted from each study. Risk of bias was assessed using quality assessment tools.Results: Thirty-one studies were included. Adolescents with a history of BPD present with more respiratory symptoms (wheezing, respiratory exacerbations, need for respiratory medication) and twenty-five studies showed a reduction in pulmonary function, with varying impact according to BPD severity and no differences before and after the surfactant era. Spirometry evaluation throughout the years is not consensual, but meth-acholine and salbutamol response in BPD groups is increased compared to non-BPD groups. Markers of eosin-ophilic airway inflammation are not increased as in asthma patients. Exercise potential is identical, but data regarding physical capacity and activity are inconsistent. More frequent radiologic abnormalities translate into higher high-resolution computed tomography scores, with linear (72.2 %) and triangular subpleural opacities (58.3 %) as the most common findings. There is a higher risk for special needs in education, but quality of life seems to be equal to non-BPD adolescents.Conclusions: BPD negatively impacts both pulmonary and non-pulmonary outcomes in adolescents

    Plasmons and Coulomb drag in Dirac/Schroedinger hybrid electron systems

    Full text link
    We show that the plasmon spectrum of an ordinary two-dimensional electron gas (2DEG) hosted in a GaAs heterostructure is significantly modified when a graphene sheet is placed on the surface of the semiconductor in close proximity to the 2DEG. Long-range Coulomb interactions between massive electrons and massless Dirac fermions lead to a new set of optical and acoustic intra-subband plasmons. Here we compute the dispersion of these coupled modes within the Random Phase Approximation, providing analytical expressions in the long-wavelength limit that shed light on their dependence on the Dirac velocity and Dirac-fermion density. We also evaluate the resistivity in a Coulomb-drag transport setup. These Dirac/Schroedinger hybrid electron systems are experimentally feasible and open new research opportunities for fundamental studies of electron-electron interaction effects in two spatial dimensions.Comment: 7 pages, 4 figure

    Ultra-stable charging of fast-scrambling SYK quantum batteries

    Get PDF
    Collective behavior strongly influences the charging dynamics of quantum batteries (QBs). Here, we study the impact of nonlocal correlations on the energy stored in a system of N QBs. A unitary charging protocol based on a Sachdev-Ye-Kitaev (SYK) quench Hamiltonian is thus introduced and analyzed. SYK models describe strongly interacting systems with nonlocal correlations and fast thermalization properties. Here, we demonstrate that, once charged, the average energy stored in the QB is very stable, realizing an ultraprecise charging protocol. By studying fluctuations of the average energy stored, we show that temporal fluctuations are strongly suppressed by the presence of nonlocal correlations at all time scales. A comparison with other paradigmatic examples of many-body QBs shows that this is linked to the collective dynamics of the SYK model and its high level of entanglement. We argue that such feature relies on the fast scrambling property of the SYK Hamiltonian, and on its fast thermalization properties, promoting this as an ideal model for the ultimate temporal stability of a generic QB. Finally, we show that the temporal evolution of the ergotropy, a quantity that characterizes the amount of extractable work from a QB, can be a useful probe to infer the thermalization properties of a many-body quantum system

    A Reference Architecture for Management of Security Operations in Digital Service Chains

    Get PDF
    Modern computing paradigms (i.e., cloud, edge, Internet of Things) and ubiquitous connectivity have brought the notion of pervasive computing to an unforeseeable level, which boosts service-oriented architectures and microservices patterns to create digital services with data-centric models. However, the resulting agility in service creation and management has not been followed by a similar evolution in cybersecurity patterns, which still largely rest on more conventional device- and infrastructure-centric models. In this Chapter, we describe the implementation of the GUARD Platform, which represents the core element of a modern cybersecurity framework for building detection and analytics services for complex digital service chains. We briefly review the logical components and how they address scientific and technological challenges behind the limitations of existing cybersecurity tools. We also provide validation and performance analysis that show the feasibility and efficiency of our implementation

    Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade

    Get PDF
    In the last decade, the treatment of non-small cell lung cancer (NSCLC) has been revolutionized by the introduction of immune checkpoint inhibitors (ICI) directed against programmed death protein 1 (PD-1) and its ligand (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA-4). In spite of these improvements, some patients do not achieve any benefit from ICI, and inevitably develop resistance to therapy over time. Tumor microenvironment (TME) might influence response to immunotherapy due to its prominent role in the multiple interactions between neoplastic cells and the immune system. Studies investigating lung cancer from the perspective of TME pointed out a complex scenario where tumor angiogenesis, soluble factors, immune suppressive/regulatory elements and cells composing TME itself participate to tumor growth. In this review, we point out the current state of knowledge involving the relationship between tumor cells and the components of TME in NSCLC as well as their interactions with immunotherapy providing an update on novel predictors of benefit from currently employed ICI or new therapeutic targets of investigational agents. In first place, increasing evidence suggests that TME might represent a promising biomarker of sensitivity to ICI, based on the presence of immune-modulating cells, such as Treg, myeloid derived suppressor cells, and tumor associated macrophages, which are known to induce an immunosuppressive environment, poorly responsive to ICI. Consequently, multiple clinical studies have been designed to influence TME towards a pro-immunogenic state and subsequently improve the activity of ICI. Currently, the mostly employed approach relies on the association of \u201cclassic\u201d ICI targeting PD-1/PD-L1 and novel agents directed on molecules, such as LAG-3 and TIM-3. To date, some trials have already shown promising results, while a multitude of prospective studies are ongoing, and their results might significantly influence the future approach to cancer immunotherapy

    Type-Decomposition of a Pseudo-Effect Algebra

    Full text link
    The theory of direct decomposition of a centrally orthocomplete effect algebra into direct summands of various types utilizes the notion of a type-determining (TD) set. A pseudo-effect algebra (PEA) is a (possibly) noncommutative version of an effect algebra. In this article we develop the basic theory of centrally orthocomplete PEAs, generalize the notion of a TD set to PEAs, and show that TD sets induce decompositions of centrally orthocomplete PEAs into direct summands.Comment: 18 page

    Plasmons in layered structures including graphene

    Full text link
    We investigate the optical properties of layered structures with graphene at the interface for arbitrary linear polarization at finite temperature including full retardation by working in the Weyl gauge. As a special case, we obtain the full response and the related dielectric function of a layered structure with two interfaces. We apply our results to discuss the longitudinal plasmon spectrum of several single and double layer devices such as systems with finite and zero electronic densities. We further show that a nonhomogeneous dielectric background can shift the relative weight of the in-phase and out-of-phase mode and discuss how the plasmonic mode of the upper layer can be tuned into an acoustic mode with specific sound velocity.Comment: 18 pages, 6 figure
    • …
    corecore