95 research outputs found

    Surface Biology & Geology Pathfinder Data Analysis Pipeline

    Get PDF
    NASA's future global orbital mission, currently in development as the Surface Biology and Geology (SBG) Designated Observable study, will acquire relatively high resolution solar-reflected spectroscopy and thermal infrared observations. Innovative processes must be utilized for handling the high volume of data anticipated to be collected, which is anticipated to exceed 100 terabytes/day, greater than NASA's total extant airborne hyperspectral data collection. Collecting, processing/re-processing, disseminating, and exploiting this volume of data presents new challenges. To begin addressing them, NASA is drawing upon the expertise developed from its astrophysics programs to address Earth science and applications. Specifically, NASA is adapting the science processing operations technology developed for the Kepler and TESS planet-hunting missions for imaging spectroscopy data processing. This technology development has been the foundation for the remarkable scientific successes of Kepler and TESS. The Kepler/TESS data processing technology provides a scalable architecture for robust, repeatable, and replicable science and application products while enabling the Earth science community to develop, test, and implement new algorithms. Our effort to leverage this existing capability has begun by ingesting data and applying workflows from the EO-1/Hyperion 17-year mission archive that provides globally sampled visible through shortwave infrared spectra that are representative of SBG data types and volumes. This pathfinding data processing system will help define the solutions to processing SBG data volumes and will enable the scientific community to interact with the data and processing pipeline to create new science products

    Self-similar shear-thickening behavior in CTAB/NaSal surfactant solutions

    Full text link
    The effect of salt concentration Cs on the critical shear rate required for the onset of shear thickening and apparent relaxation time of the shear-thickened phase, has been investigated systematically for dilute CTAB/NaSal solutions. Experimental data suggest a self-similar behavior of the critical shear rate and relaxation time as functions of Cs. Specifically, the former ~ Cs^(-6) whereas the latter ~ Cs^(6) such that an effective Weissenberg number for the onset of the shear thickened phase is only weakly dependent on Cs. A procedure has been developed to collapse the apparent shear viscosity versus shear rate data obtained for various values of Cs into a single master curve. The effect of Cs on the elastic modulus and mesh size of the shear-induced gel phase for different surfactant concentrations is discussed. Experiments performed using different flow cells (Couette and cone-and-plate) show that the critical shear rate, relaxation time and the maximum viscosity attained are geometry-independent. The elastic modulus of the gel phase inferred indirectly by employing simplified hydrodynamic instability analysis of a sheared gel-fluid interface is in qualitative agreement with that predicted for an entangled phase of living polymers. A qualitative mechanism that combines the effect of Cs on average micelle length and Debye parameter with shear-induced configurational changes of rod-like micelles is proposed to rationalize the self-similarity of SIS formation.Comment: 27 pages, 17 figure

    Oscillations of a solid sphere falling through a wormlike micellar fluid

    Full text link
    We present an experimental study of the motion of a solid sphere falling through a wormlike micellar fluid. While smaller or lighter spheres quickly reach a terminal velocity, larger or heavier spheres are found to oscillate in the direction of their falling motion. The onset of this instability correlates with a critical value of the velocity gradient scale Γc∼1\Gamma_{c}\sim 1 s−1^{-1}. We relate this condition to the known complex rheology of wormlike micellar fluids, and suggest that the unsteady motion of the sphere is caused by the formation and breaking of flow-induced structures.Comment: 4 pages, 4 figure

    Shear-banding in a lyotropic lamellar phase, Part 2: Temporal fluctuations

    Full text link
    We analyze the temporal fluctuations of the flow field associated to a shear-induced transition in a lyotropic lamellar phase: the layering transition of the onion texture. In the first part of this work [Salmon et al., submitted to Phys. Rev. E], we have evidenced banded flows at the onset of this shear-induced transition which are well accounted for by the classical picture of shear-banding. In the present paper, we focus on the temporal fluctuations of the flow field recorded in the coexistence domain. These striking dynamics are very slow (100--1000s) and cannot be due to external mechanical noise. Using velocimetry coupled to structural measurements, we show that these fluctuations are due to a motion of the interface separating the two differently sheared bands. Such a motion seems to be governed by the fluctuations of σ⋆\sigma^\star, the local stress at the interface between the two bands. Our results thus provide more evidence for the relevance of the classical mechanical approach of shear-banding even if the mechanism leading to the fluctuations of σ⋆\sigma^\star remains unclear

    Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles

    Full text link
    Using velocity profile measurements based on dynamic light scattering and coupled to structural and rheological measurements in a Couette cell, we present evidences for a shear-banding scenario in the shear flow of the onion texture of a lyotropic lamellar phase. Time-averaged measurements clearly show the presence of structural shear-banding in the vicinity of a shear-induced transition, associated to the nucleation and growth of a highly sheared band in the flow. Our experiments also reveal the presence of slip at the walls of the Couette cell. Using a simple mechanical approach, we demonstrate that our data confirms the classical assumption of the shear-banding picture, in which the interface between bands lies at a given stress σ⋆\sigma^\star. We also outline the presence of large temporal fluctuations of the flow field, which are the subject of the second part of this paper [Salmon {\it et al.}, submitted to Phys. Rev. E]

    Phase Separation of Rigid-Rod Suspensions in Shear Flow

    Full text link
    We analyze the behavior of a suspension of rigid rod-like particles in shear flow using a modified version of the Doi model, and construct diagrams for phase coexistence under conditions of constant imposed stress and constant imposed strain rate, among paranematic, flow-aligning nematic, and log-rolling nematic states. We calculate the effective constitutive relations that would be measured through the regime of phase separation into shear bands. We calculate phase coexistence by examining the stability of interfacial steady states and find a wide range of possible ``phase'' behaviors.Comment: 23 pages 19 figures, revised version to be published in Physical Review

    Interplay between elastic instabilities and shear-banding: three categories of Taylor–Couette flows and beyond

    Get PDF
    In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatiotemporal fluctuations. Recently, it has been suggested that those fluctuations originate from a purely elastic instability of the shear-banding flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic polymer solutions. The criterion for purely elastic Taylor–Couette instability adapted to shear-banding flows suggested three categories of shear-banding depending on their stability. In the present study, we report on a large set of experimental data which demonstrates the existence of the three categories of shear-banding flows in various surfactant solutions. Consistent with theoretical predictions, increases in the surfactant concentration or in the curvature of the geometry destabilize the flow, whereas an increase in temperature stabilizes the flow. However, experiments also exhibit some interesting behaviors going beyond the purely elastic instability criterion.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates

    Get PDF
    SMAP (Soil Moisture Active and Passive) radiometer observations at similar to 40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model to generate the 9 km SMAP Level-4 Soil Moisture product. This study demonstrates that adding high-resolution radar observations from Sentinel-1 to the SMAP assimilation can increase the spatiotemporal accuracy of soil moisture estimates. Radar observations were assimilated either separately from or simultaneously with radiometer observations. Assimilation impact was assessed by comparing 3-hourly, 9 km surface and root-zone soil moisture simulations with in situ measurements from 9 km SMAP core validation sites and sparse networks, from May 2015 to December 2016. The Sentinel-1 assimilation consistently improved surface soil moisture, whereas root-zone impacts were mostly neutral. Relatively larger improvements were obtained from SMAP assimilation. The joint assimilation of SMAP and Sentinel-1 observations performed best, demonstrating the complementary value of radar and radiometer observations
    • …
    corecore