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Abstract SMAP (Soil Moisture Active and Passive) radiometer observations at ∼40 km resolution are
routinely assimilated into the NASA Catchment Land Surface Model to generate the 9 km SMAP Level-4
Soil Moisture product. This study demonstrates that adding high-resolution radar observations from
Sentinel-1 to the SMAP assimilation can increase the spatiotemporal accuracy of soil moisture estimates.
Radar observations were assimilated either separately from or simultaneously with radiometer observations.
Assimilation impact was assessed by comparing 3-hourly, 9 km surface and root-zone soil moisture
simulations with in situ measurements from 9 km SMAP core validation sites and sparse networks, from
May 2015 to December 2016. The Sentinel-1 assimilation consistently improved surface soil moisture,
whereas root-zone impacts were mostly neutral. Relatively larger improvements were obtained from SMAP
assimilation. The joint assimilation of SMAP and Sentinel-1 observations performed best, demonstrating
the complementary value of radar and radiometer observations.

1. Introduction

The global water, energy, and carbon cycles are linked through the moisture contained in the soil surface and
root zone. Surface soil moisture controls the partitioning of precipitation into runoff and infiltration; energy is
dissipated through the evaporation and transpiration of surface and root-zone moisture; and transpiration is
linked to CO2 uptake by plants. As the crucial link between these cycles, soil moisture is considered an essential
climate variable [World Meteorological Organization, 2006].

Past decades have drawn an increasing interest toward constraining soil moisture simulations from land sur-
face models (LSM) through the assimilation of different kinds of satellite microwave observations. Radiometer
and scatterometer missions provide coarse (25–40 km) but frequent (approximately daily) observations, while
synthetic aperture radar (SAR) missions achieve high resolution (1 m to 1 km) but with infrequent revisit times
(several days to weeks).

With the increasing availability of new types of satellite observations emerges the opportunity to explore their
synergistic use [Su et al., 2014]. This study follows Draper et al. [2012], who assimilated soil moisture retrievals
from active and passive microwave observations and found that for maximum accuracy and coverage both
should be assimilated together. Here we investigated the joint assimilation of SMAP (Soil Moisture Active and
Passive) [Entekhabi et al. [2010]] and Sentinel-1 [Geudtner, 2012] observations for improving estimates of soil
moisture. The SMAP L band radiometer provides approximately daily brightness temperature (TB) observa-
tions at∼40 km resolution, which are routinely assimilated into the GEOS-5 (Goddard Earth Observing System
version 5) CLSM (Catchment Land Surface Model) [Koster et al., 2000] to generate the 9 km SMAP Level-4 Soil
Moisture product [Reichle et al., 2016]. Sentinel-1, a constellation of two (A and B) satellites with C band SAR,
provides backscatter (𝜎∘) observations at 5 × 20 m2 resolution. The integration of Sentinel-1 𝜎∘ observations
into the assimilation system designed for SMAP is appealing in several ways:

RESEARCH LETTER
10.1002/2017GL073904

Key Points:
• Sentinel-1 radar and SMAP radiometer

observations provide complementary
information on soil moisture

• Assimilating Sentinel-1 and
SMAP observations improves the
spatiotemporal accuracy of soil
moisture estimates

• Adding Sentinel-1 data increases
the assimilation impact by up to
30%, relative to that of SMAP-only
assimilation

Correspondence to:
H. Lievens,
hans.lievens@ugent.be

Citation:
Lievens, H., R. H. Reichle, Q. Liu,
G. J. M. De Lannoy, R. S. Dunbar,
S. B. Kim, N. N. Das, M. Cosh,
J. P. Walker, and W. Wagner (2017),
Joint Sentinel-1 and SMAP data
assimilation to improve soil moisture
estimates, Geophys. Res.
Lett., 44, 6145–6153,
doi:10.1002/2017GL073904.

Received 20 APR 2017

Accepted 5 JUN 2017

Accepted article online 9 JUN 2017

Published online 27 JUN 2017

©2017. American Geophysical Union.
All Rights Reserved.

LIEVENS ET AL. SENTINEL-1 AND SMAP SOIL MOISTURE 6145

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/154953475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://orcid.org/0000-0002-6391-1691
http://orcid.org/0000-0002-0789-5818
http://orcid.org/0000-0003-0173-9344
http://orcid.org/0000-0003-4776-1918
http://orcid.org/0000-0002-4817-2712
http://orcid.org/0000-0001-7704-6857
http://dx.doi.org/10.1002/2017GL073904


Geophysical Research Letters 10.1002/2017GL073904

Figure 1. Average time interval (days) between assimilated (a–d) SMAP and (e–h) Sentinel-1 observations over the model domain for May 2015 to December
2016. Symbols show locations of core sites and sparse network sites with (Figures 1a–1d) surface (sfmc) and (Figures 1e–1h) root-zone (rzmc) soil moisture
measurements.

1. Sentinel-1 is the first SAR constellation with 6 day repeat cycle, offering sufficiently frequent revisits for data
assimilation. Revisit times of previous SAR missions permit only infrequent assimilation updates that could
not be expected to increase the skill of the model estimates significantly.

2. Sentinel-1 C band 𝜎∘ and SMAP L band TB observations are complementary. SMAP observations show
a higher sensitivity to soil moisture, allowing for more accurate estimation over large spatial scales,
whereas Sentinel-1 observations offer increased spatial detail which can potentially bridge the scale gap
between radiometer observations and LSMs operating at increasingly finer resolutions [Wood et al., 2011;
Su et al., 2014].

3. The joint assimilation offers an alternative to the offline downscaling of SMAP TB observations with
Sentinel-1 𝜎∘ and is not restricted to synchronized overpasses, i.e., it can be performed if either Sentinel-1
or SMAP observations (or both) are available.

4. The direct assimilation of𝜎∘ observations, instead of the corresponding soil moisture retrievals, circumvents
the need for (operational) soil moisture products. While such products are in development for Sentinel-1,
the 𝜎∘ assimilation can readily be extended to other SAR missions, such as the RADARSAT constellation, for
which soil moisture products are currently lacking.

Finally, the impact of Sentinel-1𝜎∘ assimilation is a useful measure of the mission’s value for estimating surface
and root-zone soil moisture, which are key to a better understanding of the water cycle.

2. Data and Methods
2.1. Remote Sensing Observations
SMAP Level-1C TB observations [Chan et al., 2016] in vertical (V) and horizontal (H) polarization on the 36 km
EASE-2 (Equal Scalable Earth version 2.0) grid were assimilated from May 2015 to December 2016. The study
domain covers parts of the eastern USA, western Europe, the Sahel, and southeastern Australia (Figures 1a–1d,
respectively). The observations were masked out over grid cells that included more than 5% open water or
glaciated surfaces (based on the GEOS-5 land mask [Mahanama et al., 2015]) or were contaminated by radio
frequency interference (RFI).

Sentinel-1A (Sentinel-1B) backscatter data were assimilated starting May 2015 (October 2016) until December
2016. The Level-1 observations in VV polarization were preprocessed from their native 5× 20 m2 resolution to
the 1 km EASE-2 grid. Sentinel-1 data were excluded for grid cells with more than 1% coverage by open water,
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urban area, flooded area, permanent ice, or snow and more than 60% coverage by forests, based on 1 km land
cover data [Tuanmu and Jetz, 2014]. Areas with complex topography were masked out using a 2.5∘ threshold
for surface slope, derived from 90 m Shuttle Radar Topography Mission elevation data. The thinned data set
was subsequently aggregated linearly to the 9 km EASE-2 grid, provided that 60% of the 1 km grid cells within
a given 9 km grid cell contained valid data. Finally, observations were normalized to a reference incidence
angle. While Sentinel-1 cycles repeatedly in the same orbital plane, targets on Earth are illuminated at only a
limited set of angles, reducing the potential of regression techniques, as applied for normalizing ASCAT data
[Bartalis et al., 2006]. Therefore, incidence angle normalization was performed by rescaling the mean 𝜎∘ over
successive 0.3∘ angle bins to the mean of the angle bin having the most observations. An advantage of this
method is that it simultaneously corrects azimuthal biases [Bartalis et al., 2006]. A limitation is the reduction
in accuracy for angle bins with a low number of observations. Therefore, bins with fewer than 15 observa-
tions were withdrawn; as more observations become available, the errors in the incidence angle normalization
decrease.

In a final quality control step, SMAP and Sentinel-1 observations were masked out for times and locations
where the snow water equivalent (SWE) exceeded 10−4 kg/m2, the modeled surface temperature (tp1) was
less than 273.25 K, or the precipitation (Pcp) exceeded 50 mm/d, based on CLSM estimates from the assim-
ilation system. On average, the time interval between assimilated observations was about 10 times shorter
for SMAP than for Sentinel-1 (Figure 1). For SMAP, the interval was generally around 1 day, except for areas
in Europe that were affected by RFI in SMOS (Soil Moisture and Ocean Salinity) observations needed for bias
correction (section 2.4). For Sentinel-1, a 6 day interval was achieved over Europe (based primarily on just
Sentinel-1A). Other continents were less frequently observed (once every 10–20 days). Recent modifications
to the observing schedule increase the Sentinel-1 data availability over the (nearly) global land surface to
match that over Europe.

2.2. In Situ Measurements
In situ surface (sfmc) and root-zone (rzmc) soil moisture measurements were assembled over SMAP core val-
idation sites [Colliander et al., 2017] and sparse networks. At core sites, accurate measurements are available
at the 9 km scale of the assimilation estimates for a limited set of conditions. Sparse networks cover a wider
range of conditions but are point estimates within a larger model grid cell and thus subject to scaling errors.
The specific validation sites used here are listed in Table 1, with locations shown in Figure 1.

The sfmc measurements correspond to a depth of 5 cm. For core sites, rzmc measurements were vertically
averaged with weights proportional to sensor depths within the 0–100 cm layer [Reichle et al., 2016]. For sparse
networks, measurements were extracted at single depths, i.e., 20 cm for SCAN, USCRN, and SMOSMANIA;
25 cm for Oklahoma Mesonet; and 45 cm for OzNet [De Lannoy and Reichle, 2016a; Reichle et al., 2016].

A strict quality control was performed to remove artifacts, such as spikes, inhomogeneities, oscillations, or
trends following Liu et al. [2011], Entekhabi et al. [2014], and De Lannoy et al. [2014a]. Similar to the remote
sensing observations, in situ measurements were masked out if CLSM SWE > 10−4 kg/m2, tp1 < 273.25 K, or
Pcp > 50 mm/d. Only sites with more than 1000 (3-hourly) measurements within the validation period (May
2015 to December 2016) were included.

2.3. Models
CLSM was run on the 9 km EASE-2 grid using hourly 0.25∘ × 0.3125∘ meteorological forcings from the GEOS-5
Forward Processing system [Lucchesi, 2013] with precipitation corrections similar to those of the Level-4 Soil
Moisture system [Reichle and Liu, 2014; Reichle et al., 2016]. The CLSM sfmc (0–5 cm) and rzmc (0–100 cm)
were diagnosed from three model prognostic variables, the catchment deficit (catdef ), surface excess (srfexc),
and root-zone excess (rzexc), which represent the equilibrium profile and deviations from equilibrium in the
surface and root-zone layers, respectively.

TB simulations were obtained using the zero-order 𝜏 − 𝜔 radiative transfer model (RTM), with input use of
CLSM sfmc, surface soil temperature, air temperature, and climatological leaf area index (LAI) from the Mod-
erate Resolution Imaging Spectroradiometer (MOD15A2). The RTM was calibrated over each 9 km grid cell to
minimize biases in the mean and variance between TB simulations and observations [De Lannoy et al., 2013,
2014b]. The calibration was performed over a 4 year period from July 2010 to June 2014 using TB observations
from the SMOS (Soil Moisture and Ocean Salinity) mission [Kerr et al., 2001].
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Table 1. Performance Metrics R (−) and ubRMSD (m3/m3) of OL, DA𝜎∘ , DATB, and DA𝜎∘ ,TB for Surface (sfmc) and Root-Zone (rzmc) Soil Moisturea

R (−) ubRMSD (m3/m3)

N Nin situ N𝜎∘ NTB OL DA𝜎∘ DATB DA𝜎∘ ,TB CI OL DA𝜎∘ DATB DA𝜎∘ ,TB CI

sfmc (0–5 cm)

Core sites 16 2686 75 540 0.58 0.63 0.66 0.70 ±0.04 0.052 0.050 0.048 0.046 ±0.006

REMEDHUS 2 2667 127 545 0.59 0.61 0.53 0.60 ±0.14 0.032 0.034 0.037 0.035 ±0.011

Yanco 2 3913 42 628 0.84 0.86 0.92 0.93 ±0.07 0.079 0.074 0.049 0.049 ±0.030

Twenteb 1 2611 148 307 0.66 0.81 0.52 0.62 ±0.17 0.081 0.076 0.083 0.080 ±0.053

Little Washita 1 2646 78 501 0.70 0.73 0.80 0.79 ±0.07 0.041 0.040 0.035 0.035 ±0.010

Fort Cobb 2 4083 78 520 0.64 0.63 0.74 0.74 ±0.08 0.043 0.043 0.038 0.037 ±0.007

South Fork 2 3161 45 486 0.10 0.44 0.62 0.67 ±0.11 0.069 0.060 0.052 0.050 ±0.012

Valencia 1 1754 94 605 0.39 0.42 0.49 0.51 ±0.16 0.026 0.025 0.024 0.024 ±0.006

Nigerc 1 1066 42 595 0.28 0.23 0.47 0.54 ±0.17 0.038 0.040 0.049 0.045 ±0.006

Benind 1 1821 85 607 0.68 0.71 0.74 0.76 ±0.13 0.063 0.062 0.056 0.056 ±0.024

TxSON 2 2177 22 711 0.75 0.77 0.83 0.82 ±0.13 0.045 0.044 0.039 0.039 ±0.014

HOBEd 1 1080 134 248 0.82 0.82 0.73 0.83 ±0.13 0.044 0.046 0.051 0.046 ±0.026

Sparse networks 201 3488 49 580 0.59 0.61 0.66 0.68 ±0.04 0.059 0.057 0.054 0.053 ±0.005

SCANe 27 3472 33 544 0.57 0.57 0.64 0.64 ±0.04 0.057 0.056 0.056 0.055 ±0.006

USCRNf 25 3288 36 509 0.58 0.60 0.66 0.66 ±0.04 0.058 0.057 0.053 0.053 ±0.005

Oklahoma Mesonetg 93 3825 47 585 0.54 0.56 0.67 0.67 ±0.09 0.064 0.062 0.058 0.057 ±0.013

OzNeth 42 3405 39 655 0.78 0.79 0.84 0.85 ±0.12 0.077 0.073 0.062 0.061 ±0.031

SMOSMANIAi 14 1887 142 512 0.55 0.61 0.62 0.66 ±0.14 0.048 0.045 0.045 0.042 ±0.014

rzmc (0– 100 cm)

Core sites 7 2705 52 562 0.53 0.65 0.73 0.75 ±0.18 0.034 0.033 0.027 0.028 ±0.008

Little Washita 1 1999 78 501 0.81 0.87 0.84 0.85 ±0.17 0.032 0.031 0.027 0.027 ±0.012

Fort Cobb 2 3418 78 520 0.68 0.64 0.68 0.70 ±0.26 0.028 0.030 0.031 0.030 ±0.009

South Fork 2 3122 45 486 0.02 0.38 0.57 0.61 ±0.32 0.043 0.038 0.030 0.030 ±0.009

TxSON 2 1927 22 711 0.85 0.84 0.90 0.90 ±0.37 0.032 0.033 0.023 0.024 ±0.023

Sparse networks 161 3534 51 574 0.64 0.62 0.64 0.64 ±0.10 0.046 0.045 0.046 0.046 ±0.015

SCAN 23 3335 35 537 0.65 0.63 0.63 0.62 ±0.11 0.041 0.042 0.043 0.042 ±0.014

USCRN 22 3175 37 518 0.64 0.62 0.64 0.63 ±0.11 0.046 0.046 0.043 0.043 ±0.008

Oklahoma Mesonet 85 3947 47 587 0.62 0.60 0.64 0.64 ±0.36 0.057 0.057 0.056 0.056 ±0.075

OzNet 18 3527 39 667 0.75 0.77 0.81 0.81 ±0.66 0.029 0.031 0.054 0.049 ±0.176

SMOSMANIA 1 1799 145 520 0.50 0.55 0.52 0.57 ±0.47 0.040 0.038 0.039 0.037 ±0.094
aAverage metrics for 9 km core sites and sparse networks are followed by the metrics for individual sites/networks. N is the number of grid cells (for core sites) or

point measurements (for sparse networks). Nin situ is the number of 3-hourly in situ measurements used for validation. N𝜎∘ and NTB are the numbers of assimilated
Sentinel-1 𝜎∘ and SMAP TB observations, respectively. SCAN stands for the U.S. Natural Resources Conservation Service Soil Climate Analysis Network, USCRN for
the U.S. Climate Reference Network, and SMOSMANIA for the SMOS-Meteorological Automatic Network Integrated Application.

bvan der Velde et al. [2015].
cLebel et al. [2009], Pellarin et al. [2009], and Cappelaere et al. [2009].
dBircher et al. [2012].
eSchaefer et al. [2007].
f Diamond et al. [2013] and Bell et al. [2013].
gMcPherson et al. [2007].
hSmith et al. [2012].
iAlbergel et al. [2008] and Dorigo et al. [2011].

Backscatter was simulated by the Water Cloud Model [Attema and Ulaby, 1978] as the sum of vegetation 𝜎∘
and attenuated soil 𝜎∘. The vegetation 𝜎∘ and attenuation were modeled as a function of LAI, and soil 𝜎∘ was
a linear function of the CLSM sfmc. Note that a linear soil model was preferred over physically based models
(e.g., the Integral Equation Model [Fung, 1994]), which often saturate at moist conditions [Wagner et al., 2010]
and cause unrealistically suppressed variability in 𝜎∘, particularly if the LSM is (regionally) exposed to wet
biases [Lievens et al., 2016]. Due to the limited availability of Sentinel-1 data, the WCM was calibrated per 9 km
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Figure 2. The (a) sfmc (m3/m3) forecast and increments (m3/m3) for (b) DA𝜎∘ , (c) DATB, and (d) DA𝜎∘ ,TB over Spain, for 1
May 2015, 6 A.M.

grid cell [Lievens et al., 2016] over the same period as used for the validation. Future research should address
the validation using independent data.

2.4. Data Assimilation
The three-dimensional (3-D) Ensemble Kalman Filter (EnKF) [De Lannoy and Reichle, 2016b] was used to assim-
ilate multiple SMAP observations located within a circular (1.25∘ radius) area around a given 9 km model grid
cell. The 3-D filter takes into account that SMAP observations have a footprint that is larger than the model res-
olution. The native Sentinel-1 observations have a footprint that is much smaller than the model resolution.
Therefore, the aggregated (9 km) Sentinel-1 observations were used to constrain only the matching 9 km grid
cells (1-D filter). If both SMAP and Sentinel-1 observations were available simultaneously, the analysis in the
joint assimilation proceeded sequentially: First, a 3-D analysis was conducted using the SMAP observations.
Thereafter, Sentinel-1 observations were used in a 1-D analysis to update the estimates from the 3-D SMAP
analysis.

The model state vector contained srfexc, rzexc, and catdef (section 2.3). The forecast error variance was calcu-
lated from 24 ensemble trajectories, obtained by perturbing forcings (precipitation, shortwave, and longwave
radiation) and state variables (catdef and srfexc) [De Lannoy and Reichle, 2016a]. The observation error vari-
ance for SMAP TB was set to 42 K2, with an isotropic spatial error correlation length of 0.25∘. The Sentinel-1 𝜎∘

observation error variance was set to 0.32 dB2 [Lievens et al., 2016]. Since Sentinel-1 observations were greatly
oversampled, observation errors were assumed uncorrelated over space. Finally, TB and 𝜎∘ observation errors
were assumed uncorrelated.

The model forecasts can be biased against the observations despite the calibration of the 𝜏 − 𝜔 model
and the WCM. To reduce the impact of biases, the assimilation used observation anomalies from the sea-
sonal cycle that were added to the forecast seasonal cycle. The SMAP TB seasonal cycle was calculated from
∼4 years of SMOS data [De Lannoy and Reichle, 2016a]. This method does not address errors that arise from
using climatological vegetation parameters when the (true) vegetation varies from year to year. Given the
short (∼1.5 years) data record, Sentinel-1 𝜎∘ anomalies were calculated by subtracting a 6 month moving
average from the times series, which reduced errors from vegetation, but may have also partly removed soil
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Figure 3. The performance of OL, DA𝜎∘ , DATB and DA𝜎∘ ,TB for soil moisture simulation: (a,c) R (−) and (b,d) ubRMSD
(m3/m3) for (a,b) sfmc and (c,d) rzmc. Error bars represent the 95% confidence intervals.

moisture information. A relatively long (6 month) window was selected to minimize this artifact and to
increase the number of observations for characterizing the seasonal cycle.

2.5. Experiments
The following experiments were performed: (1) OL: open loop reference, mean of a 24-member, model-only
ensemble simulation without any data assimilation; (2) DA𝜎∘ : assimilation of Sentinel-1 𝜎∘ (1D-EnKF); (3) DATB:
assimilation of SMAP TB (3D-EnKF); and (4) DA𝜎∘ ,TB: Joint assimilation of Sentinel-1 and SMAP observations in
1-D and 3-D analysis configuration, respectively.

The assimilation experiments feature different increment characteristics (Figure 2). Besides the narrower
swath, increments of DA𝜎∘ were spatially more refined than corresponding increments of DATB. This may relate
to the finer Sentinel-1 resolution, as well as to the 1-D analysis configuration, having the potential advantage
of better representing local hydrologic conditions, such as convective precipitation events. The 3-D approach
for SMAP has the advantage that it provides smoother transitions and allows for interpolation and extrap-
olation of the increments. The joint assimilation (DA𝜎∘ ,TB) involved both a 3-D and 1-D filter step and thus
combined the smoothed large-scale increments from SMAP with finer-scale increments from Sentinel-1.

Validation of the experiments was based on the correlation coefficient (R (−)) and the unbiased root-mean-
square difference (ubRMSD (m3/m3)), obtained after removing the static long-term mean bias from the sim-
ulations and measurements. Metrics are accompanied by 95% confidence intervals (CI), calculated with the
assumption of a𝜒2 distribution for the ubRMSD, and an asymptotic normal distribution after Fisher Z transfor-
mation for R [De Lannoy and Reichle, 2016a]. The CIs account for autocorrelation in the time series by reducing
the effective sample size and degrees of freedom [Dawdy and Matalas, 1964; Draper et al., 2012]. Spatial error
correlations between nearby sites were accounted for by spatially clustering the results as in De Lannoy and
Reichle [2016a], to avoid that metrics and CIs are dominated by densely sampled areas.
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Figure 4. The time-averaged increase in spatial correlation R (−)
for the assimilation experiments (relative to the OL) with respect
to in situ sfmc over sparse networks in the USA (SCAN, USCRN,
and Oklahoma Mesonet), for all sites and time steps (“All”) and
for sites and time steps with Sentinel-1 observations
(“Observed”).

3. Results

Simulated sfmc and rzmc time series were com-
pared with in situ measurements at core vali-
dation sites and sparse networks (Table 1 and
Figure 3). All time steps were included in the
evaluation, regardless of whether observations
were assimilated.

The sfmc simulations improved increasingly for
DA𝜎∘ , DATB, and DA𝜎∘ ,TB (Figure 3). For instance,
the R for core sites increased from 0.58 (OL) to
0.63, 0.66, and 0.70, whereas the ubRMSD for
core sites decreased from 0.052 (OL) to 0.050,
0.048, and 0.046 m3/m3, respectively (Table 1).
Similar results apply for sparse networks. There-
fore, this study suggests a better performance
when combining SMAP and Sentinel-1 observa-
tions in a data assimilation framework. Relative
to the SMAP-only assimilation, the joint assim-
ilation increased the improvement by ∼30%.
However, most improvements were not signifi-
cant at the 95% level (as indicated by the over-

lapping CIs). One reason for the lack of significance is in the relatively short data records, which necessarily
results in large CIs. Moreover, the CIs were possibly overestimated because of the assumed perfectly correlated
errors between sites within the same cluster.

The impact of the Sentinel-1 assimilation may be comparatively small because during most of the experiment
period relatively few Sentinel-1 observations were available, particularly outside Europe. While in general
larger improvements were observed for DATB than DA𝜎∘ , results deteriorated for DATB (versus OL) at three
European sites (REMEDHUS, Twente, and HOBE) but yielded improvements for DA𝜎∘ (Table 1). As previously
shown by Lievens et al. [2016], the joint assimilation alleviates the negative impacts from TB assimilation
over those sites, while further enhancing positive impacts over sites where assimilation of both 𝜎∘ and TB
is beneficial (e.g., Yanco, South Fork, Valencia, and Benin). This illustrates the complementary nature of 𝜎∘

and TB observations and their relative merits for data assimilation, thereby corroborating the result of Draper
et al. [2012].

For rzmc, considerable improvements were obtained for the core site average for all assimilation experiments
(Figure 3). However, these improvements are mainly attributed to South Fork, which had a poor performance
for OL (Table 1). For other core sites, the impact of DA𝜎∘ was neutral, while DATB and particularly DA𝜎∘ ,TB pro-
duced moderate improvements over OL. Over sparse networks, no clear impact was observed for any of the
assimilation experiments. Overall, the impact was less pronounced for rzmc compared to sfmc.

Finally, it was investigated if the assimilation can also improve the spatial patterns in the estimated sfmc fields
for sparse networks in the USA, i.e., SCAN, USCRN, and Oklahoma Mesonet (Figure 4). To this end, the spa-
tial correlation between simulations and in situ measurements was calculated and averaged over time. Note
that combining measurements from different networks may introduce uncertainty in the analysis. Moreover,
sparse networks usually contain only a single site per 9 km grid cell, which may or may not be representative
of the grid cell average conditions. Therefore, the results should be interpreted with care.

In a first assessment, all sites were included for all time steps, regardless of whether observations were
assimilated. In this case, a minor improvement in spatial R (+0.01) over the OL was observed for DA𝜎∘ , whereas
larger R improvements (+0.04 and +0.05) were found for DATB and DA𝜎∘ ,TB, respectively. However, as only
few Sentinel-1 observations were assimilated over the USA (on average 39 per site over the study period),
the impact may be concealed. Therefore, in a second assessment, spatial correlations were calculated only for
time steps and sites where Sentinel-1 data were assimilated. In this case, improvements in R became compa-
rable for DA𝜎∘ (+0.05) and DATB (+0.06) and were largest for DA𝜎∘ ,TB (+0.09). This highlights the potential gain
in impact from the assimilation of Sentinel-1 observations with the recent increase in revisit frequency.
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4. Conclusions

Sentinel-1 𝜎∘ observations were assimilated either separately from or simultaneously with SMAP TB obser-
vations into CLSM, to assess their relative and complementary value for improving soil moisture estimates.
The comparison with in situ measurements from SMAP core validation sites and sparse networks revealed
that assimilation of Sentinel-1 𝜎∘ produces a moderate improvement in surface soil moisture time series,
whereas minor impacts were found for the temporal skill of root-zone soil moisture. Larger improvements
were obtained with the assimilation of SMAP observations, while the joint assimilation of SMAP and Sentinel-1
observations performed best.

Similar results apply for spatial soil moisture estimation over the USA. The spatial correlation with in situ mea-
surements from sparse networks improved increasingly with the assimilation of Sentinel-1, SMAP, and joint
observations. The impact of Sentinel-1 was particularly evidenced when focusing on sites and time steps for
which Sentinel-1 observations were assimilated. This result is promising, considering the recent increase in
Sentinel-1 data availability going forward.

An increased number of Sentinel-1 observations is expected to benefit the assimilation, not only by more
frequent updates of model states but also by the more accurate processing of observations (e.g., incidence
angle normalization and bias correction) and more accurate constraining of the backscatter model. Future
study should assess how the increased availability of data will impact hydrologic simulations over the foreseen
12 years of Sentinel-1 operation.

References
Albergel, C., P. de Rosnay, C. Gruhier, J. Muñoz-Sabater, S. Hasenauer, L. Isaksen, Y. Kerr, and W. Wagner (2008), Evaluation of remotely sensed

and modelled soil moisture products using global ground-based in situ observations, Remote Sens. Environ., 118, 215–226.
Attema, E., and F. Ulaby (1978), Vegetation modeled as a water cloud, Radio Sci., 13(2), 357–364.
Bartalis, Z., K. Scipal, and W. Wagner (2006), Azimuthal anisotropy of scatterometer measurements over land, IEEE Trans. Geosci. Remote

Sens., 44(8), 2083–2092.
Bell, J., et al. (2013), U.S. climate reference network soil moisture and temperature observations, J. Hydrometeorol., 14, 977–988.
Bircher, S., N. Skou, K. H. Jensen, J. P. Walker, and L. Rasmussen (2012), A soil moisture and temperature network for SMOS validation in

western Denmark, Hydrol. Earth Syst. Sci., 16, 1445–1463.
Cappelaere, B., et al. (2009), The AMMA-CATCH experiment in the cultivated Sahelian area of south-west Niger—Investigating water cycle

response to a fluctuating climate and changing environment, J. Hydrol., 375, 34–51.
Chan, S., E. G. Njoku, and A. Colliander (2016), SMAP L1C radiometer half-orbit 36 km EASE-grid brightness temperatures, version 3,NASA Natl.

Snow and Ice Data Cent. Distrib. Active Arch. Cent., Boulder, Colo., doi:10.5067/E51BSP6V3KP7, Last accessed 20 March 2017.
Colliander, A., et al. (2017), Validation of SMAP surface soil moisture products with core validation sites, Remote Sens. Environ., 191, 215–231.
Dawdy, D., and N. Matalas (1964), Statistical and probability analysis of hydrologic data. Part III: Analysis of variance, covariance and

time series, in Handbook of Applied Hydrology: A Compendium of Water-Resources Technology, edited by V. T. Chow, pp. 8.68–8.91,
McGraw-Hill, New York.

De Lannoy, G. J. M., and R. H. Reichle (2016a), Global assimilation of multiangle and multipolarization SMOS brightness temperature
observations into the GEOS-5 Catchment Land Surface Model for soil moisture estimation, J. Hydrometeorol., 17, 669–691.

De Lannoy, G. J. M., and R. H. Reichle (2016b), Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface
model, Hydrol. Earth Syst. Sci., 20, 4895–2016.

De Lannoy, G. J. M., R. H. Reichle, and V. R. N. Pauwels (2013), Global calibration of the GEOS-5 L-band microwave radiative transfer model
over nonfrozen land using SMOS observations, J. Hydrometeorol., 14(3), 765–785.

De Lannoy, G. J. M., R. D. Koster, R. H. Reichle, S. Mahanama, and Q. Liu (2014a), An updated treatment of soil texture and associated
hydraulic properties in a global land modeling system, J. Adv. Model. Earth Syst., 6, 957–979.

De Lannoy, G. J. M., R. H. Reichle, and J. A. Vrugt (2014b), Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters
using Bayesian inference and SMOS observations, Remote Sens. Environ., 148, 146–157.

Diamond, H., et al. (2013), U.S. climate reference network after one decade of operations: Status and assessment, Bull. Am. Meteorol. Soc., 94,
485–498.

Dorigo, W. A., W. Wagner, R. Hohensinn, S. Hahn, C. Paulik, M. Drusch, S. Mecklenburg, P. van Oevelen, A. Robock, and T. Jackson (2011),
The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15,
1675–1698.

Draper, C., R. H. Reichle, G. J. M. De Lannoy, and Q. Liu (2012), Assimilation of passive and active microwave soil moisture retrievals,
Geophys. Res. Lett., 39, L04401, doi:10.1029/2011GL050655.

Entekhabi, D., et al. (2014), SMAP handbook, Tech. Rep. 400-1567, JPL, Pasadena, Calif.
Entekhabi, D., et al. (2010), The Soil Moisture Active Passive (SMAP) mission, Proc. IEEE, 98(5), 704–716.
Fung, A. (1994), Microwave Scattering and Emission Models and Their Applications, Artech House, Boston, Mass.
Geudtner, D. (2012), Sentinel-1 system overview and performance, Proc. SPIE 8528, Earth Observing Missions and Sensors: Development,

Implementation, and Characterization II, vol. 8528, 7 pp., doi:10.1117/12.977485.
Kerr, Y. H., P. Waldteufel, J. P. Wigneron, J. M. Martinuzzi, J. Font, and M. Berger (2001), Soil moisture retrieval from space: The Soil Moisture

and Ocean Salinity (SMOS) mission, IEEE Trans. Geosci. Remote Sens., 39(8), 1729–1735.
Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar (2000), A catchment-based approach to modeling land surface processes

in a general circulation model: 1. Model structure, J. Geophys. Res., 105(D20), 24,809–24,822.
Lebel, T., et al. (2009), AMMA-CATCH studies in the Sahelian region of West-Africa: An overview, J. Hydrol., 375, 3–13.

Acknowledgments
The study was performed at the NASA
Goddard Space Flight Center in the
framework of the HYDRAS+ project
(SR/00/302) financed by the Belgian
Science Policy (BELSPO). Hans Lievens
is a postdoctoral research fellow of
the Research Foundation Flanders
(FWO). Rolf Reichle is supported by the
SMAP Science Team. Computational
resources were provided by the
NASA High-End Computing Program
through the NASA Center for Climate
Simulation. We would like to thank the
principal investigators and contributors
to the in situ soil moisture data,
including José Martínez-Fernández
(REMEDHUS), Rogier van der Velde
(Twente), Ernesto Lopez-Baeza
(Valencia), Thierry Pellarin
(AMMA-CATCH Observatory: Niger
and Benin), Todd Caldwell (TxSON),
and Simone Bircher (HOBE). We thank
the Associate Editor and reviewers
for their valuable contribution to
this paper.

LIEVENS ET AL. SENTINEL-1 AND SMAP SOIL MOISTURE 6152

http://dx.doi.org/10.5067/E51BSP6V3KP7
http://dx.doi.org/10.1029/2011GL050655
http://dx.doi.org/10.1117/12.977485


Geophysical Research Letters 10.1002/2017GL073904

Lievens, H., B. Martens, N. E. C. Verhoest, S. Hahn, R. H. Reichle, and D. G. Miralles (2016), Assimilation of global radar backscatter and
radiometer brightness temperature observations to improve soil moisture and land evaporation estimates, Remote Sens. Environ., 189,
194–210.

Liu, Q., R. H. Reichle, R. Bindlish, M. Cosh, W. Crow, R. De Jeu, G. J. M. De Lannoy, G. J. Huffman, and T. Jackson (2011), The contributions of
precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system, J. Hydrometeorol.,
12, 750–765.

Lucchesi, R. (2013), File specification for GEOS-5 FP, Tech. Rep. GMAO Off. Note No. 4 (Version 1.0), NASA Goddard Space Flight Cent.,
Greenbelt, Md. [Available at https://ntrs.nasa.gov/search.jsp?R=20150001437.]

Mahanama, S., R. D. Koster, G. K. Walker, L. L. Takacs, R. H. Reichle, G. De Lannoy, Q. Liu, B. Zhao, and M. J. Suarez (2015), Land boundary
conditions for the Goddard Earth Observing System Model version 5 (GEOS-5) climate modeling system—Recent updates
and data file descriptions, NASA/TM-2015-104606/Vol. 39, NASA Goddard Space Flight Center, Greenbelt, Md. [Available at
https://ntrs.nasa.gov/search.jsp?R=20160002967.]

McPherson, R. A., et al. (2007), Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet,
J. Atmos. Oceanic Technol., 24, 301–321.

Pellarin, T., J. P. Laurent, B. Cappelaere, B. Decharme, L. Descroix, and D. Ramier (2009), Hydrological modelling and associated microwave
emission of a semi-arid region in south-western Niger, J. Hydrol., 375, 262–272.

Reichle, R. H., and Q. Liu (2014), Observation-corrected precipitation estimates in GEOS-5, NASA/TM-2014-104606/Vol. 35, NASA Goddard
Space Flight Center, Greenbelt, Md. [Available at https://ntrs.nasa. gov/search.jsp?R=20150000725.]

Reichle, R. H., et al. (2016), Soil Moisture Active Passive Mission L4_SM data product assessment (version 2 validated release),
Tech. Rep. GMAO Office Note No. 12 (Version 1.0), NASA Goddard Space Flight Center, Greenbelt, Md. [Available at
https://ntrs.nasa.gov/search.jsp?R=20160008109.]

Schaefer, G. L., M. H. Cosh, and T. J. Jackson (2007), The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN),
J. Atmos. Oceanic Technol., 24, 2073–2077.

Smith, A., et al. (2012), The Murrumbidgee soil moisture monitoring network data set, Water Resour. Res., 48, W07701,
doi:10.1029/2012WR011976.

Su, Z., et al. (2014), First results of the Earth observation Water Cycle Multi-mission Observation Strategy (WACMOS), Int. J. Appl. Earth Obs.
Geoinf., 26, 270–285.

Tuanmu, M.-N., and W. Jetz (2014), A global 1-km consensus land-cover product for biodiversity and ecosystem modeling, Global Ecol.
Biogeogr., 23(9), 1031–1045.

van der Velde, R., M. S. Salama, O. A. Eweys, J. Wen, and Q. Wang (2015), Soil moisture mapping using combined active or passive microwave
observations over the east of the Netherlands, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 4355–4372.

Wagner, W., D. Sabel, M. Doubkova, A. Bartsch, and C. Pathe (2010), The potential of Sentinel-1 for monitoring soil moisture with a high
spatial resolution at global scale, paper presented at Earth Observation and Water Cycle Science, Frascati, Italy.

Wood, E. F., et al. (2011), Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water,
Water Resour. Res., 47, W05301, doi:10.1029/2010WR010090.

World Meteorological Organization (2006), Systematic observation requirements for satellite-based products for climate, Tech. Rep.
WMO/TD 1338, GCOS-107, WMO, Geneva, Switzerland.

LIEVENS ET AL. SENTINEL-1 AND SMAP SOIL MOISTURE 6153

https://ntrs.nasa.gov/search.jsp?R=20150001437
https://ntrs.nasa.gov/search.jsp?R=20160002967
https://ntrs.nasa. gov/search.jsp?R=20150000725
https://ntrs.nasa.gov/search.jsp?R=20160008109
http://dx.doi.org/10.1029/2012WR011976
http://dx.doi.org/10.1029/2010WR010090

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


