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Abstract SMAP (Soil Moisture Active and Passive) radiometer observations at ~40 km resolution are
routinely assimilated into the NASA Catchment Land Surface Model to generate the 9 km SMAP Level-4
Soil Moisture product. This study demonstrates that adding high-resolution radar observations from
Sentinel-1 to the SMAP assimilation can increase the spatiotemporal accuracy of soil moisture estimates.
Radar observations were assimilated either separately from or simultaneously with radiometer observations.
Assimilation impact was assessed by comparing 3-hourly, 9 km surface and root-zone soil moisture
simulations with in situ measurements from 9 km SMAP core validation sites and sparse networks, from
May 2015 to December 2016. The Sentinel-1 assimilation consistently improved surface soil moisture,
whereas root-zone impacts were mostly neutral. Relatively larger improvements were obtained from SMAP
assimilation. The joint assimilation of SMAP and Sentinel-1 observations performed best, demonstrating
the complementary value of radar and radiometer observations.

1. Introduction

The global water, energy, and carbon cycles are linked through the moisture contained in the soil surface and
root zone. Surface soil moisture controls the partitioning of precipitation into runoff and infiltration; energy is
dissipated through the evaporation and transpiration of surface and root-zone moisture; and transpiration is
linked to CO, uptake by plants. As the crucial link between these cycles, soil moisture is considered an essential
climate variable [World Meteorological Organization, 2006].

Past decades have drawn an increasing interest toward constraining soil moisture simulations from land sur-
face models (LSM) through the assimilation of different kinds of satellite microwave observations. Radiometer
and scatterometer missions provide coarse (25-40 km) but frequent (approximately daily) observations, while
synthetic aperture radar (SAR) missions achieve high resolution (1 m to 1 km) but with infrequent revisit times
(several days to weeks).

With the increasing availability of new types of satellite observations emerges the opportunity to explore their
synergistic use [Su et al., 2014]. This study follows Draper et al. [2012], who assimilated soil moisture retrievals
from active and passive microwave observations and found that for maximum accuracy and coverage both
should be assimilated together. Here we investigated the joint assimilation of SMAP (Soil Moisture Active and
Passive) [Entekhabi et al. [2010]] and Sentinel-1 [Geudtner, 2012] observations for improving estimates of soil
moisture. The SMAP L band radiometer provides approximately daily brightness temperature (TB) observa-
tions at ~40 km resolution, which are routinely assimilated into the GEOS-5 (Goddard Earth Observing System
version 5) CLSM (Catchment Land Surface Model) [Koster et al., 2000] to generate the 9 km SMAP Level-4 Soil
Moisture product [Reichle et al., 2016]. Sentinel-1, a constellation of two (A and B) satellites with C band SAR,
provides backscatter (6°) observations at 5 x 20 m? resolution. The integration of Sentinel-1 ¢° observations
into the assimilation system designed for SMAP is appealing in several ways:
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Figure 1. Average time interval (days) between assimilated (a—d) SMAP and (e-h) Sentinel-1 observations over the model domain for May 2015 to December
2016. Symbols show locations of core sites and sparse network sites with (Figures 1a-1d) surface (sfmc) and (Figures 1e-1h) root-zone (rzmc) soil moisture

measurements.

—_

. Sentinel-1 is the first SAR constellation with 6 day repeat cycle, offering sufficiently frequent revisits for data
assimilation. Revisit times of previous SAR missions permit only infrequent assimilation updates that could
not be expected to increase the skill of the model estimates significantly.

2. Sentinel-1 C band ¢° and SMAP L band TB observations are complementary. SMAP observations show
a higher sensitivity to soil moisture, allowing for more accurate estimation over large spatial scales,
whereas Sentinel-1 observations offer increased spatial detail which can potentially bridge the scale gap
between radiometer observations and LSMs operating at increasingly finer resolutions [Wood et al., 2011;
Suetal., 2014].

3. The joint assimilation offers an alternative to the offline downscaling of SMAP TB observations with
Sentinel-1 ¢° and is not restricted to synchronized overpasses, i.e., it can be performed if either Sentinel-1
or SMAP observations (or both) are available.

4. The direct assimilation of ¢° observations, instead of the corresponding soil moisture retrievals, circumvents

the need for (operational) soil moisture products. While such products are in development for Sentinel-1,

the ¢° assimilation can readily be extended to other SAR missions, such as the RADARSAT constellation, for
which soil moisture products are currently lacking.

Finally, the impact of Sentinel-1 ¢° assimilation is a useful measure of the mission’s value for estimating surface
and root-zone soil moisture, which are key to a better understanding of the water cycle.

2. Data and Methods

2.1. Remote Sensing Observations

SMAP Level-1C TB observations [Chan et al., 2016] in vertical (V) and horizontal (H) polarization on the 36 km
EASE-2 (Equal Scalable Earth version 2.0) grid were assimilated from May 2015 to December 2016. The study
domain covers parts of the eastern USA, western Europe, the Sahel, and southeastern Australia (Figures 1a-1d,
respectively). The observations were masked out over grid cells that included more than 5% open water or
glaciated surfaces (based on the GEOS-5 land mask [Mahanama et al., 2015]) or were contaminated by radio
frequency interference (RFI).

Sentinel-1A (Sentinel-1B) backscatter data were assimilated starting May 2015 (October 2016) until December
2016.The Level-1 observations in VV polarization were preprocessed from their native 5 x 20 m? resolution to
the 1 km EASE-2 grid. Sentinel-1 data were excluded for grid cells with more than 1% coverage by open water,
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urban area, flooded area, permanent ice, or snow and more than 60% coverage by forests, based on 1 kmland
cover data [Tuanmu and Jetz, 2014]. Areas with complex topography were masked out using a 2.5° threshold
for surface slope, derived from 90 m Shuttle Radar Topography Mission elevation data. The thinned data set
was subsequently aggregated linearly to the 9 km EASE-2 grid, provided that 60% of the 1 km grid cells within
a given 9 km grid cell contained valid data. Finally, observations were normalized to a reference incidence
angle. While Sentinel-1 cycles repeatedly in the same orbital plane, targets on Earth are illuminated at only a
limited set of angles, reducing the potential of regression techniques, as applied for normalizing ASCAT data
[Bartalis et al., 2006]. Therefore, incidence angle normalization was performed by rescaling the mean ¢° over
successive 0.3° angle bins to the mean of the angle bin having the most observations. An advantage of this
method is that it simultaneously corrects azimuthal biases [Bartalis et al., 2006]. A limitation is the reduction
in accuracy for angle bins with a low number of observations. Therefore, bins with fewer than 15 observa-
tions were withdrawn; as more observations become available, the errors in the incidence angle normalization
decrease.

In a final quality control step, SMAP and Sentinel-1 observations were masked out for times and locations
where the snow water equivalent (SWE) exceeded 10~* kg/m?, the modeled surface temperature (tp1) was
less than 273.25 K, or the precipitation (Pcp) exceeded 50 mm/d, based on CLSM estimates from the assim-
ilation system. On average, the time interval between assimilated observations was about 10 times shorter
for SMAP than for Sentinel-1 (Figure 1). For SMAP, the interval was generally around 1 day, except for areas
in Europe that were affected by RFl in SMOS (Soil Moisture and Ocean Salinity) observations needed for bias
correction (section 2.4). For Sentinel-1, a 6 day interval was achieved over Europe (based primarily on just
Sentinel-1A). Other continents were less frequently observed (once every 10-20 days). Recent modifications
to the observing schedule increase the Sentinel-1 data availability over the (nearly) global land surface to
match that over Europe.

2.2. In Situ Measurements

In situ surface (sfmc) and root-zone (rzmc) soil moisture measurements were assembled over SMAP core val-
idation sites [Colliander et al., 2017] and sparse networks. At core sites, accurate measurements are available
at the 9 km scale of the assimilation estimates for a limited set of conditions. Sparse networks cover a wider
range of conditions but are point estimates within a larger model grid cell and thus subject to scaling errors.
The specific validation sites used here are listed in Table 1, with locations shown in Figure 1.

The sfmc measurements correspond to a depth of 5 cm. For core sites, rzmc measurements were vertically
averaged with weights proportional to sensor depths within the 0- 100 cm layer [Reichle et al., 2016]. For sparse
networks, measurements were extracted at single depths, i.e., 20 cm for SCAN, USCRN, and SMOSMANIA;
25 ¢cm for Oklahoma Mesonet; and 45 cm for OzNet [De Lannoy and Reichle, 2016a; Reichle et al., 2016].

A strict quality control was performed to remove artifacts, such as spikes, inhomogeneities, oscillations, or
trends following Liu et al. [2011], Entekhabi et al. [2014], and De Lannoy et al. [2014a]. Similar to the remote
sensing observations, in situ measurements were masked out if CLSM SWE > 10~* kg/m?, tp1 < 273.25 K, or
Pcp > 50 mm/d. Only sites with more than 1000 (3-hourly) measurements within the validation period (May
2015 to December 2016) were included.

2.3. Models

CLSM was run on the 9 km EASE-2 grid using hourly 0.25° x 0.3125° meteorological forcings from the GEOS-5
Forward Processing system [Lucchesi, 2013] with precipitation corrections similar to those of the Level-4 Soil
Moisture system [Reichle and Liu, 2014; Reichle et al., 2016]. The CLSM sfmc (0-5 cm) and rzmc (0-100 cm)
were diagnosed from three model prognostic variables, the catchment deficit (catdef), surface excess (srfexc),
and root-zone excess (rzexc), which represent the equilibrium profile and deviations from equilibrium in the
surface and root-zone layers, respectively.

TB simulations were obtained using the zero-order r — w radiative transfer model (RTM), with input use of
CLSM sfmc, surface soil temperature, air temperature, and climatological leaf area index (LAI) from the Mod-
erate Resolution Imaging Spectroradiometer (MOD15A2). The RTM was calibrated over each 9 km grid cell to
minimize biases in the mean and variance between TB simulations and observations [De Lannoy et al., 2013,
2014b]. The calibration was performed over a 4 year period from July 2010 to June 2014 using TB observations
from the SMOS (Soil Moisture and Ocean Salinity) mission [Kerr et al., 2001].
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Table 1. Performance Metrics R (=) and ubRMSD (m3/m3) of OL, DA,°, DAg, and DAs° 18 for Surface (sfmc) and Root-Zone (rzmc) Soil Moisture?

R(-) ubRMSD (m3/m?3)
N Npsw Nyo Njg  OL DA, DA DA cl oL DA, DA  DAserg cl

sfmc (0-5cm)

Core sites 16 2686 75 540 0.58 0.63 0.66 0.70 +0.04 0.052 0.050 0.048 0.046 +0.006
REMEDHUS 2 2667 127 545 0.59 0.61 0.53 0.60 +0.14 0.032 0.034 0.037 0.035 +0.011
Yanco 2 3913 42 628 0.84 0.86 0.92 0.93 +0.07 0.079 0.074 0.049 0.049 +0.030
TwenteP 1 2611 148 307 0.66 0.81 0.52 0.62 +0.17 0.081 0.076 0.083 0.080 +0.053
Little Washita 1 2646 78 501 0.70 0.73 0.80 0.79 +0.07 0.041 0.040 0.035 0.035 +0.010
Fort Cobb 2 4083 78 520 0.64 0.63 0.74 0.74 +0.08 0.043 0.043 0.038 0.037 +0.007
South Fork 2 3161 45 486 0.10 0.44 0.62 0.67 +0.11 0.069 0.060 0.052 0.050 +0.012
Valencia 1 1754 94 605 0.39 0.42 0.49 0.51 +0.16 0.026 0.025 0.024 0.024 +0.006
Niger© 1 1066 42 595 0.28 0.23 0.47 0.54 +0.17 0.038 0.040 0.049 0.045 +0.006
Benind 1 1821 85 607 0.68 0.71 0.74 0.76 +0.13 0.063 0.062 0.056 0.056 +0.024
TxSON 2 2177 22 711 0.75 0.77 0.83 0.82 +0.13 0.045 0.044 0.039 0.039 +0.014
HOBEM 1 1080 134 248 0.82 0.82 0.73 0.83 +0.13 0.044 0.046 0.051 0.046 +0.026
Sparse networks 201 3488 49 580 0.59 0.61 0.66 0.68 +0.04 0.059 0.057 0.054 0.053 +0.005
SCAN® 27 3472 33 544 0.57 0.57 0.64 0.64 +0.04 0.057 0.056 0.056 0.055 +0.006
USCRNF 25 3288 36 509 0.58 0.60 0.66 0.66 +0.04 0.058 0.057 0.053 0.053 +0.005
Oklahoma Mesonet9 93 3825 47 585 0.54 0.56 0.67 0.67 +0.09 0.064 0.062 0.058 0.057 +0.013
OzNeth 42 3405 39 655 0.78 0.79 0.84 0.85 +0.12 0.077 0.073 0.062 0.061 +0.031
SMOSMANIA! 14 1887 142 512 0.55 0.61 0.62 0.66 +0.14 0.048 0.045 0.045 0.042 +0.014
rzmc (0-100cm)

Core sites 7 2705 52 562 0.53 0.65 0.73 0.75 +0.18 0.034 0.033 0.027 0.028 +0.008
Little Washita 1 1999 78 501 0.81 0.87 0.84 0.85 +0.17 0.032 0.031 0.027 0.027 +0.012
Fort Cobb 2 3418 78 520 0.68 0.64 0.68 0.70 +0.26 0.028 0.030 0.031 0.030 +0.009
South Fork 2 3122 45 486 0.02 0.38 0.57 0.61 +0.32 0.043 0.038 0.030 0.030 +0.009
TxSON 2 1927 22 711 0.85 0.84 0.90 0.90 +0.37 0.032 0.033 0.023 0.024 +0.023
Sparse networks 161 3534 51 574 0.64 0.62 0.64 0.64 +0.10 0.046 0.045 0.046 0.046 +0.015
SCAN 23 3335 35 537 0.65 0.63 0.63 0.62 +0.11 0.041 0.042 0.043 0.042 +0.014
USCRN 22 3175 37 518 0.64 0.62 0.64 0.63 +0.11 0.046 0.046 0.043 0.043 +0.008
Oklahoma Mesonet 85 3947 47 587 0.62 0.60 0.64 0.64 +0.36 0.057 0.057 0.056 0.056 +0.075
OzNet 18 3527 39 667 0.75 0.77 0.81 0.81 +0.66 0.029 0.031 0.054 0.049 +0.176
SMOSMANIA 1 1799 145 520 0.50 0.55 0.52 0.57 +0.47 0.040 0.038 0.039 0.037 +0.094

@Average metrics for 9 km core sites and sparse networks are followed by the metrics for individual sites/networks. N is the number of grid cells (for core sites) or
point measurements (for sparse networks). N;j g, is the number of 3-hourly in situ measurements used for validation. N o and Nyg are the numbers of assimilated
Sentinel-1 ¢° and SMAP TB observations, respectively. SCAN stands for the U.S. Natural Resources Conservation Service Soil Climate Analysis Network, USCRN for
the U.S. Climate Reference Network, and SMOSMANIA for the SMOS-Meteorological Automatic Network Integrated Application.

bvan der Velde et al. [2015].

CLebel et al. [2009], Pellarin et al. [2009], and Cappelaere et al. [2009].

dBircher et al. [2012].

€Schaefer et al. [2007].

fDiamond et al. [2013] and Bell et al. [2013].

9McPherson et al. [2007].

hSmith et al. [2012].

iAlbergel et al. [2008] and Dorigo et al. [2011].

Backscatter was simulated by the Water Cloud Model [Attema and Ulaby, 1978] as the sum of vegetation ¢°
and attenuated soil 6°. The vegetation ¢° and attenuation were modeled as a function of LA, and soil ¢° was
a linear function of the CLSM sfmc. Note that a linear soil model was preferred over physically based models
(e.g., the Integral Equation Model [Fung, 19941), which often saturate at moist conditions [Wagner et al., 2010]
and cause unrealistically suppressed variability in ¢°, particularly if the LSM is (regionally) exposed to wet
biases [Lievens et al., 2016]. Due to the limited availability of Sentinel-1 data, the WCM was calibrated per 9 km
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Figure 2. The (a) sfmc (m3/m3) forecast and increments (m3/m3) for (b) DA, (c) DArg, and (d) DA ;o 13 over Spain, for 1
May 2015, 6 AM.

grid cell [Lievens et al., 2016] over the same period as used for the validation. Future research should address
the validation using independent data.

2.4. Data Assimilation

The three-dimensional (3-D) Ensemble Kalman Filter (EnKF) [De Lannoy and Reichle, 2016b] was used to assim-
ilate multiple SMAP observations located within a circular (1.25° radius) area around a given 9 km model grid
cell. The 3-D filter takes into account that SMAP observations have a footprint that is larger than the model res-
olution. The native Sentinel-1 observations have a footprint that is much smaller than the model resolution.
Therefore, the aggregated (9 km) Sentinel-1 observations were used to constrain only the matching 9 km grid
cells (1-D filter). If both SMAP and Sentinel-1 observations were available simultaneously, the analysis in the
joint assimilation proceeded sequentially: First, a 3-D analysis was conducted using the SMAP observations.
Thereafter, Sentinel-1 observations were used in a 1-D analysis to update the estimates from the 3-D SMAP
analysis.

The model state vector contained srfexc, rzexc, and catdef (section 2.3). The forecast error variance was calcu-
lated from 24 ensemble trajectories, obtained by perturbing forcings (precipitation, shortwave, and longwave
radiation) and state variables (catdef and srfexc) [De Lannoy and Reichle, 2016a]. The observation error vari-
ance for SMAP TB was set to 42 K2, with an isotropic spatial error correlation length of 0.25°. The Sentinel-1 ¢°
observation error variance was set to 0.32 dB? [Lievens et al., 2016]. Since Sentinel-1 observations were greatly
oversampled, observation errors were assumed uncorrelated over space. Finally, TB and ¢° observation errors
were assumed uncorrelated.

The model forecasts can be biased against the observations despite the calibration of the 7 — w model
and the WCM. To reduce the impact of biases, the assimilation used observation anomalies from the sea-
sonal cycle that were added to the forecast seasonal cycle. The SMAP TB seasonal cycle was calculated from
~4 years of SMOS data [De Lannoy and Reichle, 2016a]. This method does not address errors that arise from
using climatological vegetation parameters when the (true) vegetation varies from year to year. Given the
short (~1.5 years) data record, Sentinel-1 ¢° anomalies were calculated by subtracting a 6 month moving
average from the times series, which reduced errors from vegetation, but may have also partly removed soil
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Figure 3. The performance of OL, DA o, DAz and DAs° 18 for soil moisture simulation: (a,c) R (=) and (b,d) ubRMSD
(m3/m3) for (a,b) sfmc and (c,d) rzmc. Error bars represent the 95% confidence intervals.

moisture information. A relatively long (6 month) window was selected to minimize this artifact and to
increase the number of observations for characterizing the seasonal cycle.

2.5. Experiments

The following experiments were performed: (1) OL: open loop reference, mean of a 24-member, model-only
ensemble simulation without any data assimilation; (2) DA ;. : assimilation of Sentinel-1 ¢° (1D-EnKF); (3) DAg:
assimilation of SMAP TB (3D-EnKF); and (4) DA ;- 15: Joint assimilation of Sentinel-1 and SMAP observations in
1-D and 3-D analysis configuration, respectively.

The assimilation experiments feature different increment characteristics (Figure 2). Besides the narrower
swath, increments of DA o were spatially more refined than corresponding increments of DAg. This may relate
to the finer Sentinel-1 resolution, as well as to the 1-D analysis configuration, having the potential advantage
of better representing local hydrologic conditions, such as convective precipitation events. The 3-D approach
for SMAP has the advantage that it provides smoother transitions and allows for interpolation and extrap-
olation of the increments. The joint assimilation (DA ¢ 1p) involved both a 3-D and 1-D filter step and thus
combined the smoothed large-scale increments from SMAP with finer-scale increments from Sentinel-1.

Validation of the experiments was based on the correlation coefficient (R (—)) and the unbiased root-mean-
square difference (uUbRMSD (m3/m?3)), obtained after removing the static long-term mean bias from the sim-
ulations and measurements. Metrics are accompanied by 95% confidence intervals (Cl), calculated with the
assumption of a y2 distribution for the ubRMSD, and an asymptotic normal distribution after Fisher Z transfor-
mation for R [De Lannoy and Reichle, 2016a]. The Cls account for autocorrelation in the time series by reducing
the effective sample size and degrees of freedom [Dawdy and Matalas, 1964; Draper et al., 2012]. Spatial error
correlations between nearby sites were accounted for by spatially clustering the results as in De Lannoy and
Reichle [2016a], to avoid that metrics and Cls are dominated by densely sampled areas.

LIEVENS ET AL.

SENTINEL-1 AND SMAP SOIL MOISTURE 6150



@AG U Geophysical Research Letters 10.1002/2017GL073904

0.1 : : 3. Results

[L1PA° [PArs IPA0 15 Simulated sfmc and rzmc time series were com-
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— Figure 3). All time steps were included in the
=, 0.06+ 1 evaluation, regardless of whether observations
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'< 0.04 ] The sfmc simulations improved increasingly for
o DA, o, DArg, and DA - 15 (Figure 3). For instance,
the R for core sites increased from 0.58 (OL) to
0.02+ 1 0.63, 0.66, and 0.70, whereas the ubRMSD for
core sites decreased from 0.052 (OL) to 0.050,
0 0.048, and 0.046 m3/m3, respectively (Table 1).

A” Obsérved Similar results apply for sparse networks. There-
fore, this study suggests a better performance

Figure 4. The time-averaged increase in spatial correlation R (—
9 g P o) when combining SMAP and Sentinel-1 observa-

for the assimilation experiments (relative to the OL) with respect ™ . o )
to in situ sfmc over sparse networks in the USA (SCAN, USCRN,  tions in a data assimilation framework. Relative
and Oklahoma Mesonet), for all sites and time steps (“All") and to the SMAP-only assimilation, the joint assim-

for sites and time steps with Sentinel-1 observations ilation increased the improvement by ~30%.
(‘Observed”). However, most improvements were not signifi-

cant at the 95% level (as indicated by the over-
lapping Cls). One reason for the lack of significance is in the relatively short data records, which necessarily
results in large Cls. Moreover, the Cls were possibly overestimated because of the assumed perfectly correlated
errors between sites within the same cluster.

The impact of the Sentinel-1 assimilation may be comparatively small because during most of the experiment
period relatively few Sentinel-1 observations were available, particularly outside Europe. While in general
larger improvements were observed for DA than DA o, results deteriorated for DAz (versus OL) at three
European sites (REMEDHUS, Twente, and HOBE) but yielded improvements for DA - (Table 1). As previously
shown by Lievens et al. [2016], the joint assimilation alleviates the negative impacts from TB assimilation
over those sites, while further enhancing positive impacts over sites where assimilation of both ¢° and TB
is beneficial (e.g., Yanco, South Fork, Valencia, and Benin). This illustrates the complementary nature of ¢°
and TB observations and their relative merits for data assimilation, thereby corroborating the result of Draper
etal . [2012].

For rzmc, considerable improvements were obtained for the core site average for all assimilation experiments
(Figure 3). However, these improvements are mainly attributed to South Fork, which had a poor performance
for OL (Table 1). For other core sites, the impact of DA . was neutral, while DAy and particularly DA o 13 pro-
duced moderate improvements over OL. Over sparse networks, no clear impact was observed for any of the
assimilation experiments. Overall, the impact was less pronounced for rzmc compared to sfmc.

Finally, it was investigated if the assimilation can also improve the spatial patterns in the estimated sfmc fields
for sparse networks in the USA, i.e, SCAN, USCRN, and Oklahoma Mesonet (Figure 4). To this end, the spa-
tial correlation between simulations and in situ measurements was calculated and averaged over time. Note
that combining measurements from different networks may introduce uncertainty in the analysis. Moreover,
sparse networks usually contain only a single site per 9 km grid cell, which may or may not be representative
of the grid cell average conditions. Therefore, the results should be interpreted with care.

In a first assessment, all sites were included for all time steps, regardless of whether observations were
assimilated. In this case, a minor improvement in spatial R (+0.01) over the OL was observed for DA o, whereas
larger R improvements (+0.04 and +0.05) were found for DAz and DA o 3, respectively. However, as only
few Sentinel-1 observations were assimilated over the USA (on average 39 per site over the study period),
the impact may be concealed. Therefore, in a second assessment, spatial correlations were calculated only for
time steps and sites where Sentinel-1 data were assimilated. In this case, improvements in R became compa-
rable for DA o (+0.05) and DA (+0.06) and were largest for DA ;o 13 (+0.09). This highlights the potential gain
in impact from the assimilation of Sentinel-1 observations with the recent increase in revisit frequency.
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4, Conclusions

Sentinel-1 ¢° observations were assimilated either separately from or simultaneously with SMAP TB obser-
vations into CLSM, to assess their relative and complementary value for improving soil moisture estimates.
The comparison with in situ measurements from SMAP core validation sites and sparse networks revealed
that assimilation of Sentinel-1 ¢° produces a moderate improvement in surface soil moisture time series,
whereas minor impacts were found for the temporal skill of root-zone soil moisture. Larger improvements
were obtained with the assimilation of SMAP observations, while the joint assimilation of SMAP and Sentinel-1
observations performed best.

Similar results apply for spatial soil moisture estimation over the USA. The spatial correlation with in situ mea-
surements from sparse networks improved increasingly with the assimilation of Sentinel-1, SMAP, and joint
observations. The impact of Sentinel-1 was particularly evidenced when focusing on sites and time steps for
which Sentinel-1 observations were assimilated. This result is promising, considering the recent increase in
Sentinel-1 data availability going forward.

An increased number of Sentinel-1 observations is expected to benefit the assimilation, not only by more
frequent updates of model states but also by the more accurate processing of observations (e.g., incidence
angle normalization and bias correction) and more accurate constraining of the backscatter model. Future
study should assess how the increased availability of data willimpact hydrologic simulations over the foreseen
12 years of Sentinel-1 operation.
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