206 research outputs found
Learning to stop: a unifying principle for legged locomotion in varying environments.
Evolutionary studies have unequivocally proven the transition of living organisms from water to land. Consequently, it can be deduced that locomotion strategies must have evolved from one environment to the other. However, the mechanism by which this transition happened and its implications on bio-mechanical studies and robotics research have not been explored in detail. This paper presents a unifying control strategy for locomotion in varying environments based on the principle of 'learning to stop'. Using a common reinforcement learning framework, deep deterministic policy gradient, we show that our proposed learning strategy facilitates a fast and safe methodology for transferring learned controllers from the facile water environment to the harsh land environment. Our results not only propose a plausible mechanism for safe and quick transition of locomotion strategies from a water to land environment but also provide a novel alternative for safer and faster training of robots
Ion dynamics in a linear radio-frequency trap with a single cooling laser
We analyse the possibility of cooling ions with a single laser beam, due to
the coupling between the three components of their motion induced by the
Coulomb interaction. For this purpose, we numerically study the dynamics of ion
clouds of up to 140 particles, trapped in a linear quadrupole potential and
cooled with a laser beam propagating in the radial plane. We use Molecular
Dynamics simulations and model the laser cooling by a stochastic process. For
each component of the motion, we systematically study the dependence of the
temperature with the anisotropy of the trapping potential. Results obtained
using the full radio-frequency (rf) potential are compared to those of the
corresponding pseudo-potential. In the rf case, the rotation symmetry of the
potential has to be broken to keep ions inside the trap. Then, as for the
pseudo-potential case, we show that the efficiency of the Coulomb coupling to
thermalize the components of motion depends on the geometrical configuration of
the cloud. Coulomb coupling appears to be not efficient when the ions organise
as a line or a pancake and the three components of motion reach the same
temperature only if the cloud extends in three dimensions
Nonlinear response of electrons to a positive ion
Electric field dynamics at a positive ion imbedded in an electron gas is
considered using a semiclassical description. The dependence of the field
autocorrelation function on charge number is studied for strong ion-electron
coupling via MD simulation. The qualitative features for larger charge numbers
are a decreasing correlation time followed by an increasing anticorrelation.
Stopping power and related transport coefficients determined by the time
integral of this correlation function result from the competing effects of
increasing initial correlations and decreasing dynamical correlations. An
interpretation of the MD results is obtained from an effective single particle
model showing good agreement with the simulation results.Comment: To be published in the proceedings of the International Workshop on
Strongly Coupled Coulomb Systems, Journal of Physics
Systematic model behavior of adsorption on flat surfaces
A low density film on a flat surface is described by an expansion involving
the first four virial coefficients. The first coefficient (alone) yields the
Henry's law regime, while the next three correct for the effects of
interactions. The results permit exploration of the idea of universal
adsorption behavior, which is compared with experimental data for a number of
systems
The epidemiology of malignant mesothelioma in women: Gender differences and modalities of asbestos exposure
INTRODUCTION:
The epidemiology of gender differences for mesothelioma incidence has been rarely discussed in national case lists. In Italy an epidemiological surveillance system (ReNaM) is working by the means of a national register.
METHODS:
Incident malignant mesothelioma (MM) cases in the period 1993 to 2012 were retrieved from ReNaM. Gender ratio by age class, period of diagnosis, diagnostic certainty, morphology and modalities of asbestos exposure has been analysed using exact tests for proportion. Economic activity sectors, jobs and territorial distribution of mesothelioma cases in women have been described and discussed. To perform international comparative analyses, the gender ratio of mesothelioma deaths was calculated by country from the WHO database and the correlation with the mortality rates estimated.
RESULTS:
In the period of study a case list of 21 463 MMs has been registered and the modalities of asbestos exposure have been investigated for 16 458 (76.7%) of them. The gender ratio (F/M) was 0.38 and 0.70 (0.14 and 0.30 for occupationally exposed subjects only) for pleural and peritoneal cases respectively. Occupational exposures for female MM cases occurred in the chemical and plastic industry, and mainly in the non-asbestos textile sector. Gender ratio proved to be inversely correlated with mortality rate among countries.
CONCLUSIONS:
The consistent proportion of mesothelioma cases in women in Italy is mainly due to the relevant role of non-occupational asbestos exposures and the historical presence of the female workforce in several industrial settings. Enhancing the awareness of mesothelioma aetiology in women could support the effectiveness of welfare system and prevention policies
Epidemiological patterns of asbestos exposure and spatial clusters of incident cases of malignant mesothelioma from the Italian national registry
Abstract
BACKGROUND:
Previous ecological spatial studies of malignant mesothelioma cases, mostly based on mortality data, lack reliable data on individual exposure to asbestos, thus failing to assess the contribution of different occupational and environmental sources in the determination of risk excess in specific areas. This study aims to identify territorial clusters of malignant mesothelioma through a Bayesian spatial analysis and to characterize them by the integrated use of asbestos exposure information retrieved from the Italian national mesothelioma registry (ReNaM).
METHODS:
In the period 1993 to 2008, 15,322 incident cases of all-site malignant mesothelioma were recorded and 11,852 occupational, residential and familial histories were obtained by individual interviews. Observed cases were assigned to the municipality of residence at the time of diagnosis and compared to those expected based on the age-specific rates of the respective geographical area. A spatial cluster analysis was performed for each area applying a Bayesian hierarchical model. Information about modalities and economic sectors of asbestos exposure was analyzed for each cluster.
RESULTS:
Thirty-two clusters of malignant mesothelioma were identified and characterized using the exposure data. Asbestos cement manufacturing industries and shipbuilding and repair facilities represented the main sources of asbestos exposure, but a major contribution to asbestos exposure was also provided by sectors with no direct use of asbestos, such as non-asbestos textile industries, metal engineering and construction. A high proportion of cases with environmental exposure was found in clusters where asbestos cement plants were located or a natural source of asbestos (or asbestos-like) fibers was identifiable. Differences in type and sources of exposure can also explain the varying percentage of cases occurring in women among clusters.
CONCLUSIONS:
Our study demonstrates shared exposure patterns in territorial clusters of malignant mesothelioma due to single or multiple industrial sources, with major implications for public health policies, health surveillance, compensation procedures and site remediation programs
Design, fabrication and control of soft robots
Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883
Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics
Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics
- …