88 research outputs found

    A Hamiltonian Formulation for Long Internal Waves

    Full text link
    A novel canonical Hamiltonian formalism is developed for long internal waves in a rotating environment. This includes the effects of background vorticity and shear on the waves. By restricting consideration to flows in hydrostatic balance, superimposed on a horizontally uniform background of vertical shear and vorticity, a particularly simple Hamiltonian structure arises, which can be thought of as describing a nonlinearly coupled infinite collection of shallow water systems. The kinetic equation describing the time evolution of the spectral energy of internal waves is subsequently derived, and a stationary Kolmogorov solution is found in the high frequency limit. This is surprisingly close to the Garrett--Munk spectrum of oceanic internal waves

    Time-temperature dependent fracture toughness of PMMA

    Full text link
    A toughness-biased Ree-Eyring relationship gives a good description of fracture toughness data of PMMA over a range of temperatures (283 to 353 K) and crack velocities (10 −5 to 1 m sec −1 ). Fracture toughness was measured by Gurney's sector method. The activation energy associated with the equation supports earlier work which suggests that, in the same temperature and velocity range, cracking in PMMA is controlled by craze growth, which is governed by secondary ( β ) molecular processes. Unstable cracking at moderate velocities (10 −2 to 1 m sec −1 ) seems to be produced by an isothermal/adiabatic transformation; an analysis for the onset of instability is given. At temperatures below 283 K, changes in toughness behaviour are seen, and below 243 K no stable cracking at all was obtained. A discussion is given of various methods of characterizing resistance to cracking, and methods of transforming R (à, T ) and K (à, T ) data are compared.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44668/1/10853_2004_Article_BF00540829.pd

    Fractographic study of transverse cracks in a fibre composite

    Full text link
    Transverse fracture of unidirectional fibre composites was studied in a model glass/epoxy composite in which 1 mm-diameter rods had been used in place of fibres. The fracture surface resulting from transverse cracking in this model system was studied by scanning electron microscopy (SEM). The interaction of the crack with the epoxy matrix resin and the glass rods was the following: Cracks in the resin appeared to have effected a debonding at the glassmatrix interface before reaching the glass. The debonding then propagated along the interface and induced secondary cracks ahead of the primary debonding crack. The confluence of the secondary and primary cracks resulted in sharp ridges being formed on the matrix resin surface, produced by plastic deformation of the rigid epoxy resin. These appeared as a field of parabolic marks. Considering the brittleness of the resin, the amount of plastic deformation indicated by the ridges was astonishing. As the debonding continued around the glass rod, a transverse corrugated texture developed on the resin surface, again produced by plastic deformation. Finally, the cracks reentered the matrix from small patches of polymer adhering especially strongly to the glass surface. The overall fracture energy of transverse cracking of unidirectional fibre composites is suggested to consist, therefore, of the following elements in addition to crack propagation in the matrix resin: (a) the glass-resin debonding before the incoming cracks reach the glass, (b) the initiation of secondary cracks or debonds at the interface, (c) the plastic deformation in generating the ridges on the rigid resin surface, appearing both as the paraboloids and the transverse corrugation, and (d) cracking of the matrix reinitiated at the opposite side of the glass. The use of an enlarged glass reinforcement in this study provided a more direct observation of the properties of transverse crack propagation in composite materials than would have been possible with the small, roughly 10 μ m fibres.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44691/1/10853_2005_Article_BF01111915.pd

    Regulation of electrolyte transport with IL-1β in rabbit distal colon

    Get PDF
    Interletrkin-1β levels are elevated in inflammatory bowel disease. In this study the mechanism by which interleukin-1β affects electrolyte transport in the rabbit distal colon, was investigated. Interleukin-1β caused a delayed increase in short-circuit current (Isc) which was attributed to protein synthesis since the effect was inhibited by cycloheximide. The interleukin-1β induced increase in Isc was not affected by amiloride treatment but was completely inhibited by bumetanide or in chloride-free buffer and by indomethacin. Prostaglandin E2 levels increased in tissue treated with interleukin-1β, but this increase was reversed by cycloheximide. These data suggest that interleukin-1β causes its effect via a yet to be identified second messenger, by increasing chloride secretion through a prostaglandin E2 mediated mechanism

    Changes in expression of neuronal and glial glutamate transporters in rat hippocampus following kainate-induced seizure activity

    No full text
    • …
    corecore