1,585 research outputs found

    Flavour Changing Higgs Couplings in a Class of Two Higgs Doublet Models

    Full text link
    We analyse various flavour changing processes like thu,hct\to hu,hc, hτe,τμh\to \tau e,\tau\mu as well as hadronic decays hbs,bdh\to bs,bd, in the framework of a class of two Higgs doublet models where there are flavour changing neutral scalar currents at tree level. These models have the remarkable feature of having these flavour-violating couplings entirely determined by the CKM and PMNS matrices as well as tanβ\tan\beta. The flavour structure of these scalar currents results from a symmetry of the Lagrangian and therefore it is natural and stable under the renormalization group. We show that in some of the models the rates of the above flavour changing processes can reach the discovery level at the LHC at 13 TeV even taking into account the stringent bounds on low energy processes, in particular μeγ\mu\to e\gamma.Comment: 33 pages, 8 figures; matches version accepted for publicatio

    Jarlskog-like invariants for theories with scalars and fermions

    Get PDF
    Within the framework of theories where both scalars and fermions are present, we develop a systematic prescription for the construction of CP-violating quantities that are invariant under basis transformations of those matter fields. In theories with Spontaneous Symmetry Breaking, the analysis involves the vevs' transformation properties under a scalar basis change, with a considerable simplification of the study of CP violation in the scalar sector. These techniques are then applied in detail to the two Higgs-doublet model with quarks. It is shown that there are new invariants involving scalar-fermion interactions, besides those already derived in previous analyses for the fermion-gauge and scalar-gauge sectors.Comment: 12 pages, Latex, no figure

    What if the Masses of the First Two Quark Families are not Generated by the Standard Higgs?

    Full text link
    We point out that, in the context of the SM, V132+V232|V^2_{13}| + | V^2_{23}| is expected to be large, of order one. The fact that V132+V2321.6×103|V^2_{13}| + |V^2_{23}| \approx 1.6 \times 10^{-3} motivates the introduction of a symmetry S which leads to VCKM=1 ⁣ ⁣ ⁣IV_{CKM} ={1\>\!\!\!\mathrm{I}} , with only the third generation of quarks acquiring mass. We consider two scenarios for generating the mass of the first two quark generations and full quark mixing. One consists of the introduction of a second Higgs doublet which is neutral under S. The second scenario consists of assuming New Physics at a high energy scale , contributing to the masses of light quark generations, in an effective field theory approach. This last scenario leads to couplings of the Higgs particle to sss\overline s and ccc \overline c which are significantly enhanced with respect to those of the SM. In both schemes, one has scalar-mediated flavour- changing neutral currents which are naturally suppressed. Flavour violating top decays are predicted in the second scenario at the level \mbox{Br} (t \rightarrow h c ) \geq 5\times 10^{-5}.Comment: 11 pages, 1 figur

    Vector-like Quarks at the Origin of Light Quark Masses and Mixing

    Get PDF
    We show how a novel fine-tuning problem present in the Standard Model can be solved through the introduction of a single flavour symmetry G, together with three Q=1/3Q = - 1/3 quarks, three Q=2/3Q = 2/3 quarks, as well as a complex singlet scalar. The symmetry G is extended to the additional fields and it is an exact symmetry of the Lagrangian, only spontaneously broken by the vacuum. Specific examples are given and a phenomenological analysis of the main features of the model is presented. It is shown that even for vector-like quarks with masses accessible at the LHC, one can have realistic quark masses and mixing, while respecting the strict constraints on process arising from flavour changing neutral currents (FCNC). The vector-like quark decay channels are also described.Comment: 25 pages, no figure

    Reparametrization invariance of B decay amplitudes and implications for new physics searches in B decays

    Get PDF
    When studying B decays within the Standard Model, it is customary to use the unitarity of the CKM matrix in order to write the decay amplitudes in terms of only two of the three weak phases which appear in the various diagrams. Occasionally, it is mentioned that those two weak phases can be used in order to describe any decay amplitude, even beyond the Standard Model. Here we point out that, when describing a generic decay amplitude, the two weak phases can be chosen completely at will, and we study the behavior of the decay amplitudes under changes in the two weak phases chosen as a basis. Of course, physical observables cannot depend on such reparametrizations. This has an impact in discussions of the SM and in attempts to parametrize new physics effects in the decay amplitudes. We illustrate these issues by looking at B --> psi K_S and the isospin analysis in B --> pi pi.Comment: 16 pages, RevTe

    Bounds on gamma from CP violation measurements in B -> pi+ pi- and B -> psi K_S

    Full text link
    We study the determination of gamma from CP-violating observables in B -> pi+ pi- and B -> psi K_S. This determination requires theoretical input to one combination of hadronic parameters. We show that a mild assumption about this quantity may allow bounds to be placed on gamma, but we stress the pernicious effects that an eightfold discrete ambiguity has on such an analysis. The bounds are discussed as a function of the direct (C) and interference (S) CP-violating observables obtained from time-dependent B -> pi+ pi- decays, and their behavior in the presence of new physics effects in B-Bbar mixing is studied. (V2: Misprints corrected. Slightly improved discussion.)Comment: 11 pages, RevTex 4, 5 eps figures include

    Squamation and ecology of thelodonts

    Get PDF
    Thelodonts are an enigmatic group of Paleozoic jawless vertebrates that have been well studied from taxonomical, biostratigraphic and paleogeographic points of view, although our knowledge of their ecology and mode of life is still scant. Their bodies were covered by micrometric scales whose morphology, histology and the developmental process are extremely similar to those of extant sharks. Based on these similarities and on the well-recognized relationship between squamation and ecology in sharks, here we explore the ecological diversity and lifestyles of thelodonts. For this we use classic morphometrics and discriminant analysis to characterize the squamation patterns of a significant number of extant shark species whose ecology is well known. Multivariate analyses have defined a characteristic squamation pattern for each ecological group, thus establishing a comparative framework for inferring lifestyles in thelodonts. We then use this information to study the squamation of the currently described 147 species of thelodonts, known from both articulated and disarticulated remains. Discriminant analysis has allowed recognizing squamation patterns comparable to those of sharks and links them to specific ecological groups. Our results suggest a remarkable ecological diversity in thelodonts. A large number of them were probably demersal species inhabiting hard substrates, within caves and crevices in rocky environments or reefs, taking advantage of the flexibility provided by their micromeric squamations. Contrary to classical interpretations, only few thelodonts were placed among demersal species inhabiting sandy and muddy substrates. Schooling species with defensive scales against ectoparasites could be also abundant suggesting that social interactions and pressure of ectoparasites were present in vertebrates as early the Silurian. The presence of species showing scales suggestive of low to moderate speed and a lifestyle presumably associated with open water environments indicates adaptation of thelodonts to deep water habitats. Scale morphology suggests that some other thelodonts were strong-swimming pelagic species, most of them radiating during the Early Devonian in association with the Nekton Revolution

    Tree-level flavor-changing neutral currents in the B system: From CP asymmetries to rare decays

    Get PDF
    Tree-level flavor-changing neutral currents (FCNC) are characteristic of models with extra vectorlike quarks. These new couplings can strongly modify the B/sup 0/ CP asymmetries without conflicting with low-energy constraints. In the light of low CP asymmetry in B to J/ psi K/sub S/, we discuss the implications of these contributions. We find that even these low values can be easily accommodated in these models. Furthermore, we show that the new data from B factories tend to favor an O(20) enhancement of the b to dll transition over the SM expectation. (25 refs)

    Supernova Neutrino Oscillations

    Full text link
    Observing a high-statistics neutrino signal from a galactic supernova (SN) would allow one to test the standard delayed explosion scenario and may allow one to distinguish between the normal and inverted neutrino mass ordering due to the effects of flavor oscillations in the SN envelope. One may even observe a signature of SN shock-wave propagation in the detailed time-evolution of the neutrino spectra. A clear identification of flavor oscillation effects in a water Cherenkov detector probably requires a megatonne-class experiment.Comment: Proc. 129 Nobel Symposium "Neutrino Physics", 19-24 Aug 2004, Swede

    How sensitive to FCNC can B0B^0 CP asymmetries be?

    Get PDF
    We show that the study of CP asymmetries in neutral B-meson decays provides a very sensitive probe of flavour-changing neutral currents (FCNC). We introduce two new angles, αSM\alpha_{SM} and βSM\beta_{SM}, whose main feature is that they can be readily obtained from the measurement of the CP asymmetries aJ/ψKsa_{J/\psi K_s}, aπ+πa_{\pi^+ \pi^-} and the ratio RuVudVub/VcdVcbR_u \equiv|V_{ud}V_{ub}^*|/|V_{cd}V_{cb}^*|, providing a quantitative test of the presence of new physics in a model-independent way. Assuming that new physics is due to the presence of an isosinglet down-type quark, we indicate how to reconstruct the unitarity quadrangles and point out that the measurements of the above asymmetries, within the expected experimental errors, may detect FCNC effects, even for values of i=13VidVib/(VtdVtb)|\sum_{i=1}^3 V_{id} V_{ib}^* / (V_{td} V_{tb}^*)| at the level of a few times 10210^{-2}.Comment: 19 pages including 9 figure
    corecore