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Abstract
We show that the study of CP asymmetries in neutral B-meson decays

provides a very sensitive probe of flavour-changing neutral currents (FCNC).
We introduce two new angles, αSM and βSM , whose main feature is that
they can be readily obtained from the measurement of the CP asymmetries
aJ/ψKs , aπ+π− and the ratio Ru ≡ |VudV ∗ub|/|VcdV

∗
cb|, providing a quantitative

test of the presence of new physics in a model-independent way.
Assuming that new physics is due to the presence of an isosinglet down-

type quark, we indicate how to reconstruct the unitarity quadrangles and
point out that the measurements of the above asymmetries, within the ex-
pected experimental errors, may detect FCNC effects, even for values of∣∣∣∑3

i=1 VidV
∗
ib/(VtdV

∗
tb)
∣∣∣ at the level of a few times 10−2.
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1 Introduction

The forthcoming experiments at B-factories will provide crucial tests of
the Standard Model (SM) and its Cabibbo–Kobayashi–Maskawa mechanism
(CKM) for flavour mixing and CP violation. The fact that in gauge theories
CP violation and flavour mixing arise precisely from their two least known
sectors, namely the Yukawa coupling and/or the Higgs sector, enhances the
importance of the future experiments on B-mesons.

At the moment, there is a considerable amount of data on the CKM
mixing matrix, leading to the measurements of |Vud|, |Vus|, |Vub|, |Vcb|, ε, ε′,
xd, etc. Since, for three generations, the quark mixing matrix is completely
fixed by four parameters, the present experimental data lead in principle to
an overdetermination of the CKM matrix. In practice, the situation is more
involved, due both to experimental errors and to various hadronic uncer-
tainties in extracting the values of |Vij| from the experimental data. The
crucial role played by CP asymmetries in neutral B-meson decays such as
B0
d → J/ψKS, B0

d → π+π− stems from the fact that, being dominated by one
weak decay amplitude, they are free from most of the hadronic uncertainties
[1]. In the SM, these CP asymmetries are given by

aJ/ψKS = −
Γ (B0 −→ J/ψKs)− Γ

(
B

0
−→ J/ψKs

)
(sin(∆Mt))

(
Γ (B0 −→ J/ψKs) + Γ

(
B

0
−→ J/ψKs

))
= sin 2β (1)

aπ+π− = −
Γ (B0 −→ π+π−)− Γ

(
B

0
−→ π+π−

)
(sin(∆Mt))

(
Γ (B0 −→ π+π−) + Γ

(
B

0
−→ π+π−

))
= sin 2α (2)

where we have adopted the standard definitions of the angles α, β and γ of
the unitarity triangle

α ≡ arg

(
−
VtdV

∗
tb

VudV
∗
ub

)

β ≡ arg

(
−
VcdV

∗
cb

VtdV
∗
tb

)
(3)
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γ ≡ arg

(
−
VudV

∗
ub

VcdV
∗
cb

)
In this letter, we will analyse how the presence of new physics can be

detected, once the asymmetries aJψKS , aπ+π− are measured. A good part of
our analysis is applicable to a large class of models, although we pay special
attention to the detection of flavour-changing neutral currents (FCNC) as
well as deviations from 3 × 3 unitarity of the CKM matrix. In our analysis
we will make the following assumptions:

• We will assume that the quark decay amplitudes b→ c̄cs̄, b̄→ ūud̄, as
well as the semileptonic b decays are dominated by the SM tree-level
diagrams. This is a reasonable hypothesis, which is satisfied in most of
the known extensions of the SM.

• We will allow for the possibility of having new contributions to B–B̄
mixing as well as deviations from 3× 3 unitarity of the CKM matrix.

We will define two new angles, αSM , βSM , which have the interesting
feature of being readily obtained from the measured values of aJ/ψKS , aπ+π−,
independently of the presence of new physics. We then indicate how the
values of αSM , βSM can be used to detect in a quantitative way the presence
of new physics. This part of the analysis uses as experimental input only
the values of aJ/ψKS , aπ+π− and the ratio Ru ≡ |VudV ∗ub|/|VcdV

∗
cb|. Using then

the experimental value of the B0–B
0

mixing parameter xd, we will show how
deviations of 3 × 3 unitarity can be established by full reconstruction of a
unitarity quadrangle in the context of models extended with one isosinglet
vector-like quark of the down type (VLdQ) [2]. We will show that CP asym-
metries in B decays provide a very sensitive probe on deviations from 3× 3
unitarity, measured by the parameter Zbd, defined by

Zbd = VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb. (4)

We will give the minimum value of Zbd that can be detected at B-factories,
taking into account the expected experimental errors.

2 Model-independent analysis

It is clear from Eq. (3) that the angles α, β, γ satisfy, by definition, the
relation α + β + γ = arg(−1) = π. This relation obviously holds in any
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model, and one can write γ = π − (α + β). We will allow for the possibility
of having new physics in the B–B mixing, which we will parametrize as

M12 = M
(SM)
12 ∆∗bd (5)

where M
(SM)
12 is the standard box contribution and ∆bd is a complex number

that parametrizes the new physics. The CP asymmetries are then given by

aJ/ψKs = sin (2β − arg ∆bd)
aπ+π− = sin (2α + arg ∆bd) .

(6)

From this equation it is clear that α + β can be extracted in a model-
independent way, and one has

π − γ = (α+ β) =
1

2

[
arcsin(aJ/Ψ,Ks) + arcsin(aπ+π−)

]
. (7)

At this stage, it is useful to introduce the two angles αSM and βSM ,
defined by (see Fig. 1)

αSM = arg

[
(VudV

∗
ub + VcdV

∗
cb)

VudV
∗
ub

]

βSM = arg

[
VcdV

∗
cb

(VudV ∗ub + VcdV
∗
cb)

]
. (8)

In models that respect 3× 3 unitarity, and in particular where Zbd = 0,
one obviously has α = αSM and β = βSM , but this will not be the case in
models where Zbd 6= 0. The advantage of the new angles αSM , βSM results
from the fact that they can be readily obtained from the measurements of
aJ/ψKS , aπ+π− together with the ratio Ru. Indeed from Eq. (8), one has,

αSM = arctan

[
sin γ

Ru + cos(π − γ)

]

βSM = arctan

[
Ru sin γ

1 +Ru cos(π − γ)

]
, (9)

where Ru = |VudV ∗ub|/|VcdV
∗
cb| and γ is obtained from Eq. (7). It should be

emphasized that even if new physics is present in B–B mixing and/or there
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are deviations from unitarity, αSM , βSM are obtained in a model-independent
way from Eq. (9).

We are specially interested in detecting any deviation of the measured
values of the asymmetries aJ/ψKs, aπ+π− from the predictions of the standard
model. These deviations can be defined as

∆J/ψKS ≡ (aJ/ψKS)measured − (aJ/ψKS)SM

∆π+π− ≡ (aπ+π−)measured − (aπ+π−)SM , (10)

where (aJ/ψKS)SM , (aπ+π−)SM are the predicted values of the asymmetries in
the SM, namely:

(aJ/Ψ,Ks)SM = sin 2βSM
(aπ+π−)SM = sin 2αSM ,

(11)

Since αSM , βSM can be evaluated from Eq. (9), one can obtain ∆J/ψKS ,
∆π+π− having as experimental input only the experimental values of aJ/ψKS ,
aπ+π−. Non-vanishing values of ∆J/ψKS , ∆π+π− indicate in a quantitative
way the presence of new physics.

For the analysis that follows, it is useful to define δ ≡ β − βSM , which
implies α = αSM−δ (see Fig. 1). It is clear that the combination 2δ−arg ∆bd

can be readily evaluated from the previous analysis and one has

(2δ − arg ∆bd) = arcsin(aJ/ψKS)− 2βSM . (12)

Notice that a deviation from zero in Eq. (12) would translate in a corre-
sponding non-zero value in Eq. (10). Therefore 2δ−arg ∆bd can also be used
as a measure of the presence of new physics in CP asymmetries.

An additional piece of information that can be extracted from the pre-
vious analysis is the side opposite to the angle γ in the triangle with angles
(αSM , βSM , γ):

Luc ≡ |VudV
∗
ub + VcdV

∗
cb|. (13)

With the experimental knowledge of |VudV ∗ub|, |VcdV
∗
cb| as well as the value of

γ extracted from Eq. (7), one readily obtains Luc.
So far, we have not used in our analysis the experimental value of the

B0–B
0

mixing parameter xd. In the SM, Luc = |VtdV ∗tb|; therefore, a second
test of the SM comes from the comparison of |Luc| with the value of |VtdV ∗tb|
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extracted from the value of xd, in the framework of the SM. If the equation

xd = CdL
2
uc

Cd =
G2
F ηBMBd

6π2ΓBd
(BBdF

2
Bd

)M2
W | E(xt |)

(14)

is not fulfilled, this will be a clear indication of the presence of new physics
beyond the SM. We have used standard notation for the parameters entering
Cd, and their experimental values can be found in Ref. [3]. In a general
model, with a new contribution to Bd–Bd mixing, one has

xd = Cd |∆bd| |VtdV
∗
tb|

2 . (15)

At this stage, it is worth recalling all the information we have about the
unitarity quadrangle. From |VudV ∗ub|, |VcdV

∗
cb|, aJ/Ψ,Ks and aπ+π− we have

fully reconstructed the (αSM , βSM , γ)-triangle. The parameter 2δ − arg ∆bd

is also obtained from Eq. (12), while xd gives us the value of |∆bd||VtdV ∗tb|
2.

From Fig. 1 it is clear that, in order to obtain the full quadrangle, we need
to reconstruct the triangle with sides Luc, |Zbd| and |VtdV ∗tb|. Next we will
indicate how the full quadrangle can be reconstructed in the specific case
where the new contributions to Bd–Bd mixing are due to FCNC arising in
the context of a model where the SM is extended, through the addition of
an isosinglet VLdQ. In this case ∆bd is given by

∆bd = 1 + areiφ − br2e2iφ

reiφ =
Zbd
VtdV

∗
tb

a =
4C(xt)

E(xt)
(16)

b =
4π sin2 θW

αE(xt)
,

where E(xt) and C(xt) are the well-known Inami and Lim functions [4]:

E(x) =
−4x+ 11x2 − x3

4(1− x)2
+

3x3 lnx

2(1− x)3

C(xt) =
x

4

[
4− x

1− x
+

3x lnx

(1− x)2

]
(17)
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and xt = (mt/MW )2. The last term in ∆bd, with an r2 dependence, arises
from the well-known Z-flavour-changing tree-graph contribution. The sec-
ond term, with a linear dependence in r, comes from a one-loop Z-vertex
correction, as recently pointed out in Ref. [5]. From Eq. (16) and Fig. 1, it
is evident that we are led, from the knowledge of |∆bd||VtdV ∗tb|

2, 2δ − arg ∆bd

and Luc, to three equations with three unknowns r, φ, |VtdV ∗tb|. Note that
these last three variables completely fix the upper triangle, therefore δ and
Luc can be written in terms of r, φ and |VtdV ∗tb|. We can thus reconstruct the
triangle of sides Luc, |VtdV ∗tb|, |Zbd|, completing in this way the reconstruction
of the unitarity quadrangle.

It should be pointed out that discrete ambiguities may occur in the ex-
traction of the value of the various angles from the knowledge of the asym-
metries. A detailed discussion of how to overcome these ambiguities through
additional measurements can be found in Ref. [6]. Throughout this paper,
we will assume that these ambiguities can be solved by using additional in-
formation. We also assume that in the case of π+π−, possible complications,
which may arise due to penguin contributions to the decay amplitudes, can
be dealt with by using the analysis proposed in Ref. [7].

3 Quadrangle reconstructions

In VLdQ models one can choose, without loss of generality, a weak basis
where the up quark mass matrix is diagonal. The mixing is then described
by the 4×4 unitary matrix V , which diagonalizes the down quark mass ma-
trix. VCKM is the upper 3×4 submatrix of V and the elements of the fourth
row fix the FCNC couplings of the Z-boson, Zqq′ = −V4q′V

∗
4q. The actual

experimental bounds on V coming from tree-level processes are [3]:
0.973− 0.975 0.2187− 0.223 0.0024− 0.0040 −
0.208− 0.240 0.83− 1 0.037− 0.043 −
− − − −
− − − −

 (18)

From rare decays such as K+ → π+νν and b→ Xl+l− one obtains [8]:

|Zsd| ≤ 4.8× 10−5

|Zbd| , |Zbs| ≤ 1.9× 10−3 (19)
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and finally, from xd:

6.9× 10−3 ≤ |VtdV
∗
tb| |∆bd|

1/2 ≤ 11.3× 10−3 (20)

where the hadronic uncertainties have been included.
The purpose of our analysis is to show through specific examples how with

the knowledge of the experimental values of the CP asymmetries aJ/ψKS ,
aπ+π−, and with the experimental errors expected in B-factories, one may
be able to detect new physics beyond the SM. With the assumption that
new physics arises from the VLdQ model, we will show that one can fully
reconstruct the unitarity quadrangles. In our analysis we have adopted the
following strategy. We have made a scan of 4 × 4 unitary matrices, using
one of the standard parametrizations [9], which on the one hand satisfy all
the constraints in Eqs. (18), (19), (20) and, on the other hand, lead to
predictions to (aJ/ψKS , aπ+π−) that differ significantly from the predictions
of the SM. We have classified the solutions in two groups with the following
features.

• Case I. Relatively large value of the parameter r (e.g. r ≈ 0.2), leading
to a large value of arg ∆bd, while the deviations from 3 × 3 unitarity,
entering in the asymmetries through δ, remain relatively small. Then
the effects of new physics in the asymmetries are clearly dominated by
the mixing.

• Case II. Small values of r (e.g. r ≈ 0.05) and new physics both in the
mixing, arg ∆bd, and in the quadrangle δ.

For definiteness, we will consider two examples of unitary matrices be-
longing to each one of the cases. We will then consider two realistic situations
where one knows (aJ/ψKS , aπ+π−), |VudV ∗ub|, |VcdV

∗
cb|, xd, only within some ex-

perimental errors. The central values of aJ/ψKS , aπ+π− are chosen as the
values implied by the above-mentioned unitary matrices, belonging to cases
I and II. We will show that in each of these two cases, one would be able
to establish the existence of new physics (i.e. r 6= 0) and find the allowed
ranges of r and φ.

Let us consider the following explicit examples:

• Case I: r ' 0.185, new physics in the mixing
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|V | =


0. 97496 0. 2223 3. 9999× 10−3 0.00 492
0. 22229 0. 97423 3. 7998× 10−2 4. 9666× 10−3

4. 8288× 10−3 3. 7284× 10−2 0. 97745 0. 20782
4. 1991× 10−3 8. 8125× 10−3 0. 2077 0. 97814


(21)

arg(V ) =


0 0 −0. 41888 2. 0944

−3. 1414 −1. 1839× 10−5 1. 9116× 10−6 1. 6755
2. 6719 4. 1595× 10−2 3. 1416 0
−2. 4556 −0. 68252 −3. 1407 3. 1416

 (22)

The corresponding unitarity quadrangle is represented in Fig. 2.
In this case, one has a relatively large value of r( r = 0. 18478), and there

is new physics in the mixing corresponding to arg(∆bd) = 2. 0659 versus
δ ≡ β − βSM = 0.156. There are clearly detectable effects in aJ/ψKS and
aπ+π−, as can be seen by comparing to the values of sin 2βSM and sin 2αSM :

aJ/ψKS = −0. 90274 aπ+π− = 0. 28481

sin(2βSM) = 0. 58736 sin(2αSM) = −0. 99442 (23)

• Case II: r ' 5× 10−2 , new physics in the quadrangle and the mixing

|V | =


0. 97496 0. 2223 3. 9999× 10−3 0.00 492
0. 22197 0. 97422 3. 9989× 10−2 4. 9666× 10−3

0.0 1316 3. 7863× 10−2 0. 9773 0. 20801
3. 1224× 10−3 6. 8898× 10−3 0. 20799 0. 9781


(24)

arg(V ) =


0 0 −2. 9322 −2. 0944

−3. 1413 −1. 2891× 10−5 2. 4309× 10−6 −0. 83776
3. 0284 2. 9735× 10−2 3. 1416 3. 1416
1. 7074 2. 4479 6. 2532× 10−4 3. 1416

 (25)

The corresponding unitarity quadrangle is represented in Fig. 3.
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In this case one has a rather small value of r ( r = 5. 0494× 10−2), while
arg(∆bd) = −6. 8996×10−2 and δ = 4. 9506×10−2. There are also detectable
effects of new physics in the CP asymmetries, since one has:

aJ/ψKS = 0. 29147 aπ+π− = 0. 1233

sin(2βSM) = 0. 12741 sin(2αSM) = 0. 2875 (26)

These two examples are the starting point of our analysis of realistic situa-
tions where the input data are only known within some experimental errors.
At this stage it is worth indicating how the unitarity quadrangle can be re-
constructed, taking as input data aJ/ψKS , aπ+π−, |VudV ∗ub|, |VcdV

∗
cb| and xd.

We will use the following relations:

Luc = |VcdV
∗
cb|

√√√√√1 +R2
u ∓
√

2Ru

√√√√1 +

[
±
√(

1− a2
J/ψKS

)
(1− a2

π+π−)− aJ/ψKSaπ+π−

]
(27)

2δ−arg(∆bd) = 2 arg
{

1 +Rue
− i

2 [arcsin(aπ+π−)+arcsin(aJ/ψKS)]
}

+arcsin
(
aJ/ψKS

)
(28)

ei(2δ−arg(∆bd)) =
(1− reiφ)2

(
1 + areiφ − br2e2iφ

)∗
|1− reiφ|2 |1 + areiφ − br2e2iφ|

(29)

xd

CdL2
uc

=

∣∣∣1 + areiφ − br2e2iφ
∣∣∣

|1− reiφ|2
, (30)

where we have expressed |VtdV ∗tb| in terms of r, φ and Luc using,

|VtdV
∗
tb| =

Luc
|1− reiφ|

. (31)

It is clear that using Eqs. (27), (28) and the measured values of aJ/ψKS ,
aπ+π−, |VcdV ∗cb| and |VudV ∗ub| one can obtain Luc and 2δ − arg(∆bd). One can
then use Eqs. (29), (30) and the measured value of xd to obtain r and φ.
Therefore we can fully reconstruct the quadrangle and obtain the important
quantity reiφ = Zbd

VtdV
∗
tb

, which is a measure of the deviation of 3× 3 unitarity

in the framework of the VLdQ model.
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Next, we will assume that the measurement of aJ/ψKS , aπ+π− gives the
central values corresponding to Case I, with the following experimental errors:

aJ/ψKS = −0.90± 0.08

aπ+π− = 0.28± 0.08 (32)

where the errors probably are pessimistic for aJ/ψKS and optimistic for aπ+π−

in the case of a B-factory. From these “experimental” data, together with
|VcdV ∗cb|, |VudV

∗
ub| (including of course their actual errors) and the experimental

value of xd (with the hadronic uncertainties included in Cd) we get in this
case

cos (2δ − arg(∆bd)) = 0.06± 0.31
sin (2δ − arg(∆bd)) = −0.998± 0.017
0.90 ≤ xd

Cd|Luc|
2 ≤ 5.13.

(33)

The values given in Eq. (33) can be plugged in Eqs. (29) and (30) in order to
obtain reiφ = x+ iy. Note that the value of the angle 2δ−arg(∆bd) would be
quite far from its value in the SM, where it vanishes. Therefore, in this case
the detection of new physics would be unambiguously established. Note that
in the derivation of the result of Eq. (33), we have assumed that the discrete
ambiguities in Eqs. (27), (28) can be solved by using additional information,
as pointed out in Ref. [6]. The plot of Eqs. (29) and (30), with the allowed
bands (Eq. (33)) is given in Fig. 4.

The region between the external circle and the two internal ones is allowed
by the xd ranges. The overlap of this sector with the allowed regions for
sin (2δ − arg(∆bd)) and cos (2δ − arg(∆bd)) is the solution region we get for
reiφ = x+ iy (darker area). The input values in Case I are x = −0.075 and
y = −0.17, so the region in the third quadrant of Fig. 4 corresponds to the
inputs of Case I. To be sure that the other solution in Fig. 4 is physical, it
would be necessary to perform a very fine scanning of the parameter space
of the mixing matrix. We will not address this question in this paper and we
will concentrate on the reconstructed solution that corresponds to the input
parameters. Therefore we conclude that roughly speaking we get a value of
r between 0.1 and 0.2, never compatible with the standard model, even if we
enlarge the error bars by several standard deviations. The two seagull-shaped
regions correspond to the cos (2δ − arg (∆bd)) curves, the sin (2δ − arg (∆bd))
curve serves to eliminate the wings in the second and fourth quadrants. It
is evident from equation (29) that the curves cos (2δ − arg (∆bd)) = cst will
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pass through the points ∆bd = 0 that correspond to the “centre” of the small
circles

x =
a

2b
= 9. 92× 10−3

y = ±

√√√√−1

b

(
1 +

a2

2b

)
= ±7. 66× 10−2 (34)

r = 0.0 77

It is precisely this value of r that fixes the scale of r lower bound in Fig. 4.
The upper bound of r is fixed by the upper bound of xd

Cd|Luc|
2 (the external

circle); therefore the larger Luc can be, the better upper bound for r. In this
case, as it is evident from Fig. 2, Luc = (6.3± 1.1) × 10−3 is small. From
this simple consideration, we can expect to obtain in Case II a much better
upper bound for r, since from Fig. 3 one can see that Luc has a larger value.

Finally, let us consider Case II, where we assume the following values for
aJ/ψKS , aπ+π− :

aJ/ψKS = 0.29± 0.08, aπ+π− = 0.12± 0.08, (35)

which lead to
cos (2δ − arg(∆bd)) = 0.98± 0.01
sin (2δ − arg(∆bd)) = 0.19± 0.07
0.274 ≤ xd

Cd|Luc|
2 ≤ 1.10.

(36)

Several comments are in order. The angle 2δ − arg(∆bd) is three standard
deviations away from its standard model value of 0. This is to be expected,
since aJ/ψKS is also three standard deviations away from sin (2βSM). The
upper bound of xd

CdL2
uc

is much smaller than in Case I as we have anticipated
above. As we will see these facts completely change the origin of the scales
of the bounds in r . The analog of Fig. 4 for the Case II is plotted in Fig. 5.

The input parameters in this second case are x = 0.012 and y = −0.049,
therefore the solution corresponds to the dark area in the fourth quadrant.
The solutions have changed quadrants because sin (2δ − arg(∆bd)) has changed
sign. Clearly in this case the upper bound on r (r <∼ 0.065) is fixed by the
centre of the down small circle defined by xd

Cd|Luc|
2 = 0.274. A reduction of

the hadronic uncertainties in Cd would lead to an increase of the radius of
this small circle, thus reducing the upper bound on r. The lower bound on
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r (r >∼ 0.04) has to be taken with some caution, since it is compatible with
zero at less than three standard deviations.

At any rate, it is clear from the above analysis that the study of CP asym-
metries at B-factories provides the possibility of putting stringent bounds on∣∣∣∣ Zbd
VtdV

∗
tb

∣∣∣∣, of the order of 0.065 or even smaller. Therefore B-factories are quite

competitive with respect to other experiments looking directly for FCNC in
b→ d transitions.

4 Conclusions

We have pointed out that the study of CP asymmetries in B decays provides
an excellent tool for testing the SM and probing for new physics. In the
framework of the SM, the CP asymmetries aJ/ψKs, aπ+π− measure the angles
of the unitarity triangle. If one wants to allow for the possiblity of having
new physics in the B–B mixing and/or deviations of 3×3 unitarity of the
CKM matrix, the analysis becomes more involved. We found it useful to
introduce two new angles, αSM and βSM , whose important feature is the fact
that they are readily obtained from the measurement of aJ/ψKs , aπ+π− and
the ratio Ru, even in the presence of new physics. The knowledge of αSM
and βSM enables us to ckdetect in a quantitative way deviations from the
SM predictions for the CP asymmetries.

Assuming that the new physics arises from deviations from 3×3 unitarity,
which in turn leads to FCNC, we show how to reconstruct the unitarity
quadrangle from input data. A study of specific examples shows that even
taking into account the expected errors in the experimental values of aJ/ψKs ,
aπ+π−, it may be possible to detect the presence of the FCNC coupling Zbd,

even for a rather small value of the ratio
∣∣∣∣ Zbd
VtdV

∗
tb

∣∣∣∣.
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Figure 1: The unitarity quadrangle, with angles α, β, γ, αSM , βSM . In the
SM limit one has αSM = α, βSM = β.
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Figure 2: The unitarity quadrangle for case I, corresponding to a relatively
large contribution of new physics in the mixing, r = 0.185
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Figure 3: The unitarity quadrangle for case II, corresponding to r = 5 · 10−2

17



-0.2 -0.1 0 0.1 0.2 0.3
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
r=.185

y=r sin

x=r cos

φ

φ

Figure 4: Reconstruction of (r, φ) from the measurement of the asymmetries
in Case I
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Figure 5: Reconstruction of (r, φ) from the measurement of the asymmetries
in Case II
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