154 research outputs found

    P and S velocity sturcture of the crust and the upper mantle beneath Central Java from local tomography inversion

    Get PDF
    Here we present the results of local source tomographic inversion beneath central Java. The data set was collected by a temporary seismic network. More than 100 stations were operated for almost half a year. About 13,000 P and S arrival times from 292 events were used to obtain three-dimensional (3-D) Vp, Vs, and Vp/Vs models of the crust and the mantle wedge beneath central Java. Source location and determination of the 3-D velocity models were performed simultaneously based on a new iterative tomographic algorithm, LOTOS-06. Final event locations clearly image the shape of the subduction zone beneath central Java. The dipping angle of the slab increases gradually from almost horizontal to about 70°. A double seismic zone is observed in the slab between 80 and 150 km depth. The most striking feature of the resulting P and S models is a pronounced low-velocity anomaly in the crust, just north of the volcanic arc (Merapi-Lawu anomaly (MLA)). An algorithm for estimation of the amplitude value, which is presented in the paper, shows that the difference between the fore arc and MLA velocities at a depth of 10 km reaches 30% and 36% in P and S models, respectively. The value of the Vp/Vs ratio inside the MLA is more than 1.9. This shows a probable high content of fluids and partial melts within the crust. In the upper mantle we observe an inclined low-velocity anomaly which links the cluster of seismicity at 100 km depth with MLA. This anomaly might reflect ascending paths of fluids released from the slab. The reliability of all these patterns was tested thoroughly

    Modeling Joint Exposures and Health Outcomes for Cumulative Risk Assessment: The Case of Radon and Smoking

    Get PDF
    Community-based cumulative risk assessment requires characterization of exposures to multiple chemical and non-chemical stressors, with consideration of how the non-chemical stressors may influence risks from chemical stressors. Residential radon provides an interesting case example, given its large attributable risk, effect modification due to smoking, and significant variability in radon concentrations and smoking patterns. In spite of this fact, no study to date has estimated geographic and sociodemographic patterns of both radon and smoking in a manner that would allow for inclusion of radon in community-based cumulative risk assessment. In this study, we apply multi-level regression models to explain variability in radon based on housing characteristics and geological variables, and construct a regression model predicting housing characteristics using U.S. Census data. Multi-level regression models of smoking based on predictors common to the housing model allow us to link the exposures. We estimate county-average lifetime lung cancer risks from radon ranging from 0.15 to 1.8 in 100, with high-risk clusters in areas and for subpopulations with high predicted radon and smoking rates. Our findings demonstrate the viability of screening-level assessment to characterize patterns of lung cancer risk from radon, with an approach that can be generalized to multiple chemical and non-chemical stressors

    Imaging the mantle beneath Iceland using integrated seismological techniques

    Get PDF
    Using a combination of body wave and surface wave data sets to reveal the mantle plume and plume head, this study presents a tomographic image of the mantle structure beneath Iceland to 400 km depth. Data comes primarily from the PASSCAL-HOTSPOT deployment of 30 broadband instruments over a period of 2 years, and is supplemented by data from the SIL and ICEMELT networks. Three sets of relative teleseismic body wave arrival times are generated through cross correlation: S and SKS arrivals at 0.03–0.1 Hz, and P and PKIKP arrivals at 0.03–0.1 and 0.8–2.0 Hz. Prior to inversion the crustal portion of the travel time anomalies is removed using the crustal model ICECRTb. This step has a significant effect on the mantle velocity variations imaged down to a depth of ∼250 km. Inversion of relative arrival times only provides information on lateral velocity variations. Surface waves are therefore used to provide absolute velocity information for the uppermost mantle beneath Iceland. The average wave number for the Love wave fundamental mode at 0.020 and 0.024 Hz is measured and used to invert for the average S velocity. Combination of the body wave and surface wave information reveals a predominantly horizontal low-velocity anomaly extending from the Moho down to ∼250 km depth, interpreted as a plume head. Below the plume head a near-cylindrical low-velocity anomaly with a radius of ∼100 km and peak VP and VS anomalies of −2% and −4%, respectively, extends down to the maximum depth of resolution at 400 km. Within the plume head, in the uppermost mantle above the core of the plume, there is a relatively high velocity with a maximum VP and VS anomaly of +2%. This high-velocity anomaly may be the result of the extreme degree of melt extraction necessary to generate the thick (46 km) crust in central Iceland. Comparison of the plume volumetric flux implied by our images, the crustal generation rate, and the degree of melting suggested by rare earth element inversions, suggests that (1) mantle material must be flowing horizontally away from the plume core faster than the overlying lithosphere and (2) the bulk of the plume material does not participate in melting beneath Iceland

    An IPW estimator for mediation effects in hazard models: with an application to schooling, cognitive ability and mortality

    Get PDF
    Large differences in mortality rates across those with different levels of education are a well-established fact. Cognitive ability may be affected by education so that it becomes a mediating factor in the causal chain. In this paper, we estimate the impact of education on mortality using inverse-probability-weighted (IPW) estimators. We develop an IPW estimator to analyse the mediating effect in the context of survival models. Our estimates are based on administrative data, on men born between 1944 and 1947 who were examined for military service in the Netherlands between 1961 and 1965, linked to national death records. For these men, we distinguish four education levels and we make pairwise comparisons. The results show that levels of education have hardly any impact on the mortality rate. Using the mediation method, we only find a significant effect of education on mortality running through cognitive ability, for the lowest education group that amounts to a 15% reduction in the mortality rate. For the highest education group, we find a significant effect of education on mortality through other pathways of 12%

    Employment Assimilation of Immigrants in the Netherlands

    Full text link
    Using two Dutch labour force surveys, employment assimilation of immigrants is examined. We observe marked differences between immigrants by source country. Non-western immigrants never reach parity with native Dutch. Even second generation immigrants never fully catch up. Caribbean immigrants, who share a colonial history with the Dutch, assimilate relatively quick compared to other non-western immigrants but they still suffer from high unemployment. The study also documents that the quality of jobs is significantly lower for immigrants, especially for those who are at larger cultural distance to Dutch society. Job quality of immigrants increases with the duration of stay but again, does not reach parity with natives. The western immigrants seem to face no considerable difficulties in the Dutch labour market. The most remarkable conclusion is the irrelevance of education for socio-economic position of immigrants once the country of origin has been controlled for

    Instrumental Variable Estimation for Duration Data

    Full text link
    In this article we develop an Instrumental Variable estimation procedure that corrects for possible endogeneity of a variable in a duration model. We assume a Generalized Accelerated Failure Time (GAFT) model. This model is based on transforming the durations and assuming a distribution for these transformed durations. The GAFT model encompasses two competing approaches to duration data; the (Mixed) Proportional Hazard (MPH) model and the Accelerated Failure Time (AFT) model. The basis of the Instrumental Variable Linear Rank estimator (IVLR) is that for the true GAFT model the instrument does not influence the hazard of the transformed duration. The inverse of an extended rank test provide the estimation equations the IVLR estimation procedure is based on. We discuss the large sample properties and the efficiency of this estimator. We discuss the practical issues of implementation of the estimator. We apply the IVLR estimation approach to the Illinois re-employment bonus experiment. In this experiment individuals who became unemployed were divided at random in three groups: two bonus groups and a control group. Those in the bonus groups could refuse to participate in the experiment. It is very likely that this decision is related to the unemployment duration. We use the IVLR estimator to obtain the effect of these endogenous claimant and employer bonuses on the re-employment hazard
    corecore