1,214 research outputs found

    On the verification of climate reconstructions

    Get PDF
    The skill of proxy-based reconstructions of Northern hemisphere temperature is reassessed. Using an almost complete set of proxy and instrumental data of the past 130 years a multi-crossvalidation is conducted of a number of statistical methods, producing a distribution of verification skill scores. Among the methods are multiple regression, multiple inverse regression, total least squares, RegEM, all considered with and without variance matching. For all of them the scores show considerable variation, but previous estimates, such as a 50% reduction of error (<i>RE</i>), appear as outliers and more realistic estimates vary about 25%. It is shown that the overestimation of skill is possible in the presence of strong persistence (trends). In that case, the classical "early" or "late" calibration sets are not representative for the intended (instrumental, millennial) domain. As a consequence, <i>RE</i> scores are generally inflated, and the proxy predictions are easily outperformed by stochastic, a priori skill-less predictions. <br><br> To obtain robust significance levels the multi-crossvalidation is repeated using stochastic predictors. Comparing the score distributions it turns out that the proxies perform significantly better for almost all methods. The scores of the stochastic predictors do not vanish, nonetheless, with an estimated 10% of spurious skill based on representative samples. I argue that this residual score is due to the limited sample size of 130 years, where the memory of the processes degrades the independence of calibration and validation sets. It is likely that proxy prediction scores are similarly inflated and have to be downgraded further, leading to a final overall skill that for the best methods lies around 20%. <br><br> The consequences of the limited verification skill for millennial reconstructions is briefly discussed

    On the verification of climate reconstructions

    No full text
    International audienceThe skill of proxy-based reconstructions of Northern hemisphere temperature is reassessed. Using a rigorous verification method, we show that previous estimates of skill exceeding 50% mainly reflect a sampling bias, and that more realistic values vary about 25%. The bias results from the strong trends in the instrumental period, together with the special partitioning into calibration and validation parts. This setting is characterized by very few degrees of freedom and leaves the regression susceptible to nonsense predictors. Basing the new estimates on 100 random resamplings of the instrumental period we avoid the problem of a priori different calibration and validation statistics and obtain robust estimates plus uncertainty. The low verification scores apply to an entire suite of multiproxy regression-based models, including the most recent variants. It is doubtful whether the estimated levels of verifiable predictive power are strong enough to resolve the current debate on the millennial climate

    The effect of a regional increase in ocean surface roughness on the tropospheric circulation: a GCM experiment

    Get PDF
    The sensitivity of the atmospheric circulation to an increase in ocean surface roughness in the Southern Hemisphere storm track is investigated in a paired general circulation model experiment. Such a change in sea roughness could be induced by ocean waves generated by storms. Two extended permanent-July runs are made. One with standard sea surface roughness, the other with ten times as a large surface roughness over open sea poleward of 40-degrees-S. The regional increase in ocean surface roughness significantly modifies the tropospheric circulation in the Southern Hemisphere. The strongest effect is the reduction of tropospheric winds (by 2 m/s or 100%) above the area with increased roughness. The poleward eddy momentum flux is reduced in the upper troposphere and the meridional eddy sensible heat flux is reduced in the lower troposphere. Zonal mean and eddy kinetic energy are consistently reduced

    Observation of large scissors resonance strength in actinides

    Full text link
    The orbital M1-scissors resonance (SR) has been measured for the first time in the quasi-continuum of actinides. Particle-gamma coincidences are recorded with deuteron and 3He induced reactions on 232Th. The residual nuclei 231,232,233Th and 232,233Pa show an unexpectedly strong integrated strength of BM1=1115μn2B_{M1} = 11-15 \mu_{n}^{2} in the Egamma=1.0 - 3.5 MeV region. The increased gamma-decay probability in actinides due to the SR is important for cross-section calculations for future fuel cycles of fast nuclear reactors and may also have impact on stellar nucleosynthesis.Comment: 5 pages and 4 figure

    Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux

    Full text link
    A fully adaptive finite volume multiresolution scheme for one-dimensional strongly degenerate parabolic equations with discontinuous flux is presented. The numerical scheme is based on a finite volume discretization using the Engquist--Osher approximation for the flux and explicit time--stepping. An adaptivemultiresolution scheme with cell averages is then used to speed up CPU time and meet memory requirements. A particular feature of our scheme is the storage of the multiresolution representation of the solution in a dynamic graded tree, for the sake of data compression and to facilitate navigation. Applications to traffic flow with driver reaction and a clarifier--thickener model illustrate the efficiency of this method

    Production of an Anise-and Woodruff-like Aroma by Monokaryotic Strains of Pleurotus sapidus Grown on Citrus Side Streams

    Get PDF
    The production of natural flavors by means of microorganisms is of great interest for the food and flavor industry, and by-products of the agro-industry are particularly suitable as substrates. In the present study, Citrus side streams were fermented using monokaryotic strains of the fungus Pleurotus sapidus. Some of the cultures exhibited a pleasant smell, reminiscent of woodruff and anise, as well as herbaceous notes. To evaluate the composition of the overall aroma, liquid/liquid extracts of submerged cultures of a selected monokaryon were prepared, and the volatiles were isolated via solvent-assisted flavor evaporation. Aroma extract dilution analyses revealed p-anisaldehyde (sweetish, anisic-and woodruff-like) with a flavor dilution factor of 218 as a character impact compound. The coconut-like, herbaceous, and sweetish smelling acyloin identified as (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone also contributed to the overall aroma and was described as an aroma-active substance with an odor threshold in air of 0.2 ng L−1 to 2.4 ng L−1 for the first time. Supplementation of the culture medium with isotopically substituted L-tyrosine elucidated this phenolic amino acid as precursor of p-anisaldehyde as well as of (2S)-hydroxy-1-(4-methoxyphenyl)-1-propanone. Chiral analysis via HPLC revealed an enantiomeric excess of 97% for the isolated product produced by P. sapidus

    Stochastic slowdown in evolutionary processes

    Full text link
    We examine birth--death processes with state dependent transition probabilities and at least one absorbing boundary. In evolution, this describes selection acting on two different types in a finite population where reproductive events occur successively. If the two types have equal fitness the system performs a random walk. If one type has a fitness advantage it is favored by selection, which introduces a bias (asymmetry) in the transition probabilities. How long does it take until advantageous mutants have invaded and taken over? Surprisingly, we find that the average time of such a process can increase, even if the mutant type always has a fitness advantage. We discuss this finding for the Moran process and develop a simplified model which allows a more intuitive understanding. We show that this effect can occur for weak but non--vanishing bias (selection) in the state dependent transition rates and infer the scaling with system size. We also address the Wright-Fisher model commonly used in population genetics, which shows that this stochastic slowdown is not restricted to birth-death processes.Comment: 8 pages, 3 figures, accepted for publicatio

    String Breaking in Lattice Quantum Chromodynamics

    Full text link
    The separation of a heavy quark and antiquark pair leads to the formation of a tube of flux, or string, which should break in the presence of light quark-antiquark pairs. This expected zero temperature phenomenon has proven elusive in simulations of lattice QCD. We present simulation results that show that the string does break in the confining phase at nonzero temperature.Comment: 11 pages RevTeX, including 4 encapsulated Postscript figures. version2: minor corrections to reference

    Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase

    Get PDF
    Metal-containing formate dehydrogenases (FDH) catalyse the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active site. They display a diverse subunit and cofactor composition, but structural information on these enzymes is limited. Here we report the cryo-electron microscopic structures of the soluble Rhodobacter capsulatus FDH (RcFDH) as isolated and in the presence of reduced nicotinamide adenine dinucleotide (NADH). RcFDH assembles into a 360 kDa dimer of heterotetramers revealing a putative interconnection of electron pathway chains. In the presence of NADH, the RcFDH structure shows charging of cofactors, indicative of an increased electron load
    corecore