1,191 research outputs found

    Semigroup Well-posedness of A Linearized, Compressible Fluid with An Elastic Boundary

    Full text link
    We address semigroup well-posedness of the fluid-structure interaction of a linearized compressible, viscous fluid and an elastic plate (in the absence of rotational inertia). Unlike existing work in the literature, we linearize the compressible Navier-Stokes equations about an arbitrary state (assuming the fluid is barotropic), and so the fluid PDE component of the interaction will generally include a nontrivial ambient flow profile U \mathbf{U}. The appearance of this term introduces new challenges at the level of the stationary problem. In addition, the boundary of the fluid domain is unavoidably Lipschitz, and so the well-posedness argument takes into account the technical issues associated with obtaining necessary boundary trace and elliptic regularity estimates. Much of the previous work on flow-plate models was done via Galerkin-type constructions after obtaining good a priori estimates on solutions (specifically \cite {Chu2013-comp}---the work most pertinent to ours here); in contrast, we adopt here a Lumer-Phillips approach, with a view of associating solutions of the fluid-structure dynamics with a C0C_{0}-semigroup {eAt}t≥0\left\{ e^{ \mathcal{A}t}\right\} _{t\geq 0} on the natural finite energy space of initial data. So, given this approach, the major challenge in our work becomes establishing of the maximality of the operator A\mathcal{A} which models the fluid-structure dynamics. In sum: our main result is semigroup well-posedness for the fully coupled fluid-structure dynamics, under the assumption that the ambient flow field U∈H3(O) \mathbf{U}\in \mathbf{H}^{3}(\mathcal{O}) has zero normal component trace on the boundary (a standard assumption with respect to the literature). In the final sections we address well-posedness of the system in the presence of the von Karman plate nonlinearity, as well as the stationary problem associated with the dynamics.Comment: 1 figur

    Algunas noticias sobre Minas de oro

    Get PDF

    A theory of the infinite horizon LQ-problem for composite systems of PDEs with boundary control

    Full text link
    We study the infinite horizon Linear-Quadratic problem and the associated algebraic Riccati equations for systems with unbounded control actions. The operator-theoretic context is motivated by composite systems of Partial Differential Equations (PDE) with boundary or point control. Specific focus is placed on systems of coupled hyperbolic/parabolic PDE with an overall `predominant' hyperbolic character, such as, e.g., some models for thermoelastic or fluid-structure interactions. While unbounded control actions lead to Riccati equations with unbounded (operator) coefficients, unlike the parabolic case solvability of these equations becomes a major issue, owing to the lack of sufficient regularity of the solutions to the composite dynamics. In the present case, even the more general theory appealing to estimates of the singularity displayed by the kernel which occurs in the integral representation of the solution to the control system fails. A novel framework which embodies possible hyperbolic components of the dynamics has been introduced by the authors in 2005, and a full theory of the LQ-problem on a finite time horizon has been developed. The present paper provides the infinite time horizon theory, culminating in well-posedness of the corresponding (algebraic) Riccati equations. New technical challenges are encountered and new tools are needed, especially in order to pinpoint the differentiability of the optimal solution. The theory is illustrated by means of a boundary control problem arising in thermoelasticity.Comment: 50 pages, submitte

    Chirality, magnetism and light

    Get PDF
    No abstract available
    • …
    corecore