University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2016

Jun 21st, 5:00 PM - 5:15 PM

Eels I: European Eel Passage Survival and Injury through Three Propeller Type Turbines in France

J. Chris Avalos Normandeau Associates

Paul G. Heisey Normandeau Associates

Dilip Mathur Normandeau Associates

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Avalos, J. Chris; Heisey, Paul G.; and Mathur, Dilip, "Eels I: European Eel Passage Survival and Injury through Three Propeller Type Turbines in France" (2016). *International Conference on Engineering and Ecohydrology for Fish Passage*. 13. https://scholarworks.umass.edu/fishpassage_conference/2016/June21/13

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

European Eel Passage Survival and Injury Through Three Propeller Type Turbines in France

J. Chris Avalos*, Paul G. Heisey, and Dilip Mathur Normandeau Associates/Drumore, PA January 2015

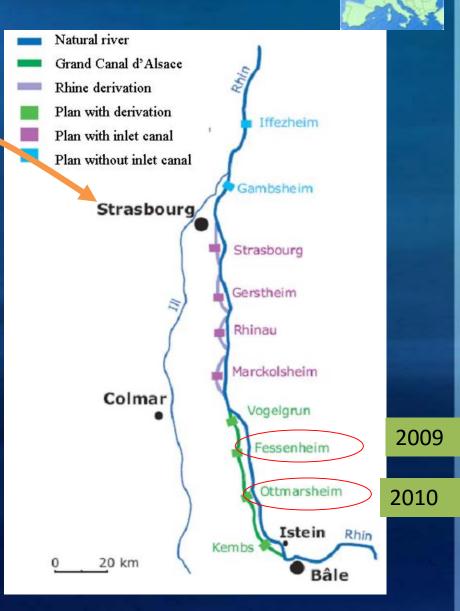
CONTENTS

• Describe how the HI-Z tag recapture technique was utilized on adult European eels to assess their condition after turbine passage.

• Present survival/injury rate of adult eels passing hydro power stations in France with vertical and horizontal (bulb) turbines.

• Assess effect of the number of turbine blades on condition of passed eels.

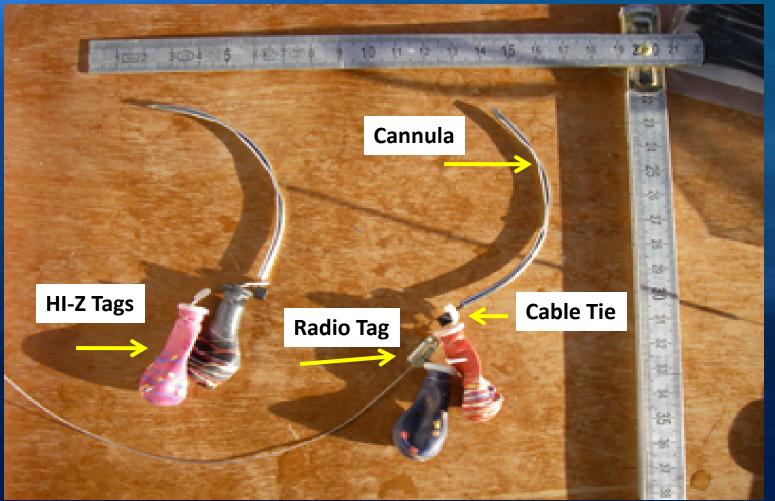
Map of France

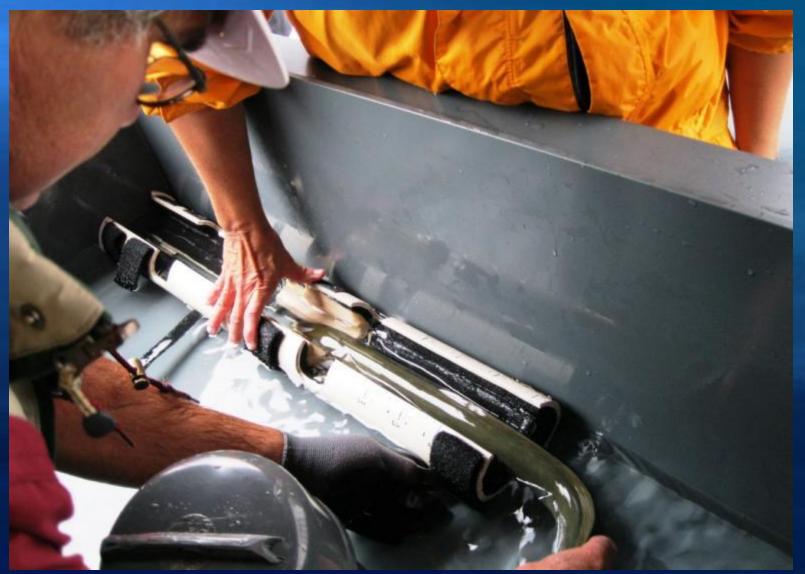

Site Study: Rhine River



10 Hydropower Plants:

- ≈ 120 km or about 100 river miles
- 4 in the "Grand Canal d'Alsace"
- 4 with inlet canal
- 2 without inlet canal




METHODS

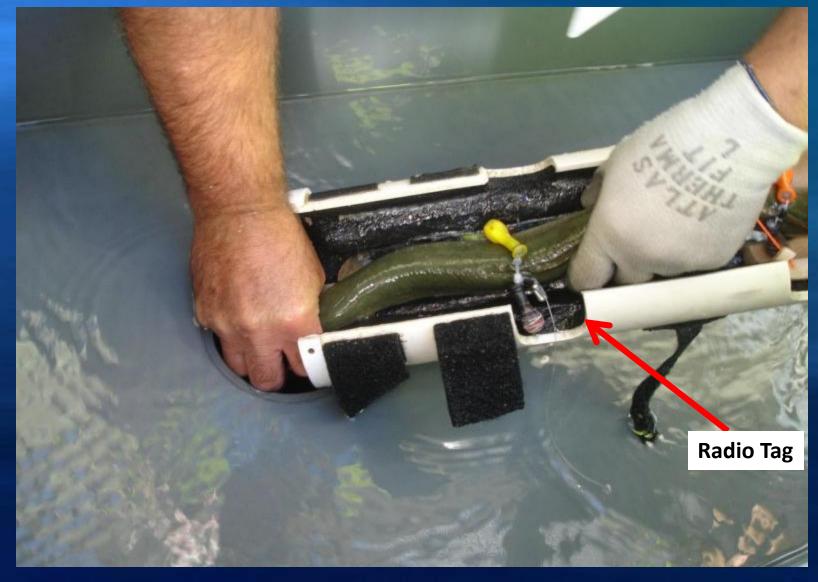
Tag Attachment Equipment- Cannula Needle with HI-Z and Radio Tags

Positioning Eel in Restraining Tagging Tube



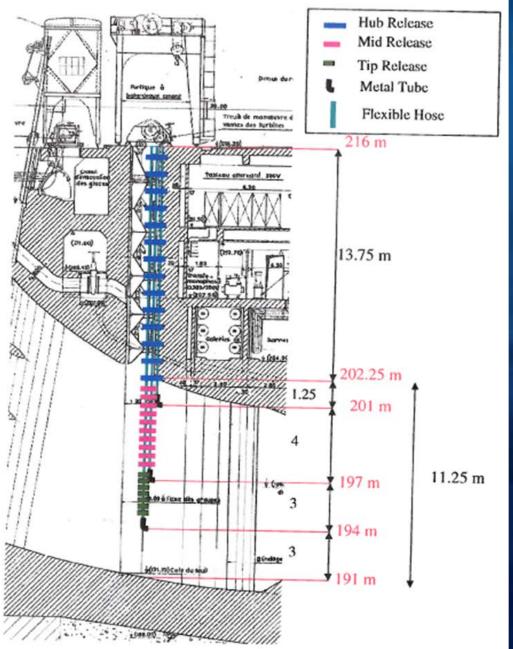
Tag attachment with Cannula Needle and Cable Tie

Attached HI-Z Tags

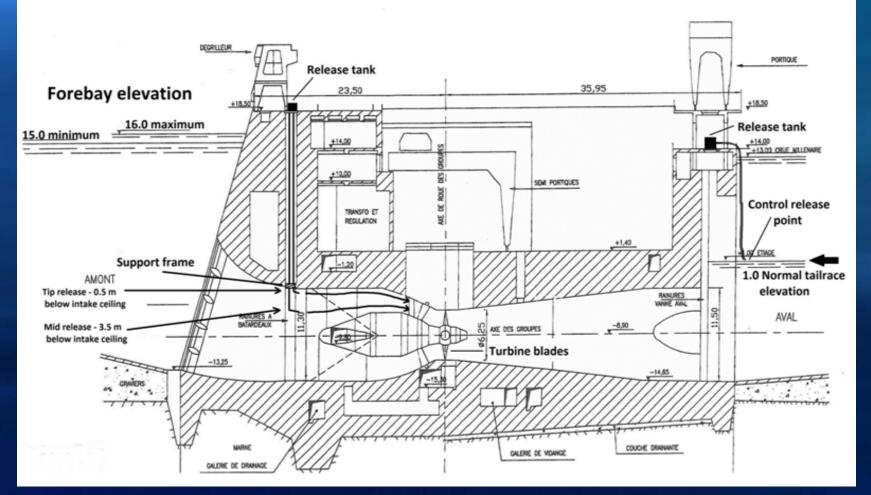


Hi-Z Tag Activation Just Prior to Release

Releasing Tagged Eel



Eel Release Tank and Hoses


Release Pipe Configuration -Vertical Kaplan Turbine

Positioned so eels projected path should be near: •Shallow=Hub •Mid=Mid •Tip=Deep

Release Pipe Conjunction – Bulb Horizontal Turbine

COUPE TRANSVERSALE

NORMANDEAU ASSOCIATES

Eel Recapture

Recaptured Eel

Characteristics of Propeller Tested Turbines

<u>Kapla</u>	n Conventional	<u>Kaplan Bulb</u>	Kaplan Conventional
Number of Blades	4	4	5
RPM	88	94	94
Runner Diameter (m)	6.7	6.2	6.2
Operating Head (m)	15	14	14.5
<u>Output (mw)</u>	45	35	~ 45

Study Conditions

	<u>4 Blade Kaplan</u>	<u>4 Blade Bulb</u>	<u>5 Blade Kaplan</u>
Projected Passage Locations	Hub/Mid Blade/Tip	Mid Blade/Tip	Hub/Mid Blade/Tip
Length Range (cm.)	60 - 90	57 – 104	62 – 100
Mean Length (cm.)	70	69	75
Number of Treatment Fish Released	281	275	300
Physical Recapture Rate*	96%	96%	98%
Number of Controls Released	71	50	55
Recapture rate	96%	100%	<u>100%</u>

* Tags only recaptured on most of remaining fish (assigned dead).

RESULTS Direct Survival (48 h)

	<u>4 Blade Kaplan</u>	<u>4 Blade Bulb</u>	<u>5 Blade Kaplan</u>
Range	88.1 - 93.6%*	91.4 – 93.7%*	
Mean	92.4%	92.3%	78.6%
90% CI±	3.6%	2.6%	3.9%
lighest Survival	Hub (Shallow)	Tip (Deep)	Hub (Shallow)
Lowest Survival	Mid	Mid	Mid

* Individual estimates not significantly different P>0.10.

Η

Malady – Free Rates Free of Visible Injuries and Loss of Equilibrium

	<u>4 Blade Kaplan</u>	<u>4 Blade Bulb</u>	<u>5 Blade Kaplan</u>
Number Examined	270	263	294
Malady - Free Range	88.3 – 95.6*	90.7 – 92.3*	69.1 - 75.0*
Mean	92.6%	91.6%	72.5%
90% CI±	5.2%	2.8%	4.3%
Best Location	Hub (Shallow)	Mid	Tip (Deep)
Worst Location	Тір	Tip	Mid

*Individual estimates not significantly different P>0.10.

Primary Injury Types

<u>4 Blade Kaplan</u> - Bruised, Scraped Body 6%; Severed or Nearly Severed 5%; Internal/Broken Backbone 2%

<u>4 Blade Bulb</u> - Bruised Body 6%; Hemorrhaged gills 2%; Severed or Nearly Severed 1%

<u>5 Blade Kaplan</u> - Severed or nearly Severed 14%; Bruised, Scraped Body 11%; Internal/Broken Backbone 6%

Typical Severance Injury

Broken Backbone – Attributed to Pinching

			F	AND A
NORMA	NDEAU ASSOCIATES, INC.			
SITE	TEST DATE 10-20-10 FT TEST CONDITION	SIN 307 707 TEST / CONTROL		
		The second		
INJURIES Boo m. s	Broken Back dy pinched, tail musch isting	Photo Date 10-20-10	1 As	
5.0-	Start Start	11/1	ALL AND	AP I

Crushed Head – Direct Strike

Body Bruising Near Tail

Body Bruising - Mid Body

NORMANDEAU ASSOCIATES, INC. TEST DATE: 9/10/10 FISH LD.#: 846 TEST/CONTROL TEST CONDITION: Shallow depth - tip blade MORTALITY: ACUTE_____ DELAYED 246

INJURIES Large Bruise Right Side

SITE:

Photo Date: 9/11/10

Severe Laceration

NORMANDEAU ASSOC	LATES, INC.
SITE:	TEST DATE: 9/11/10 FISH I.D.#: 37964 (TEST) CONTROL
a th	TEST DATE: 9/11/10 FISH I.D.#: 37964 (EST) CONTROL TEST CONDITION: Mid BIAde/Middep+4
N	ALIVE DELAYED 42 LOUR
1 00111	ALIVE
5.1969	
Stall and	
41:45	severe cut e mid Photo Date: 9/13/10
INJURIES: ALIVE	, severe cut ie mid Photo Date: 9/13/10 Ack, VERY Stressed
-	

SUMMARY/CONCLUSIONS

•The HI-Z Tag recapture technique provided high recapture rates and precision.

•Direct survival and injury estimates attributed to turbine passage attained with relatively few specimens.

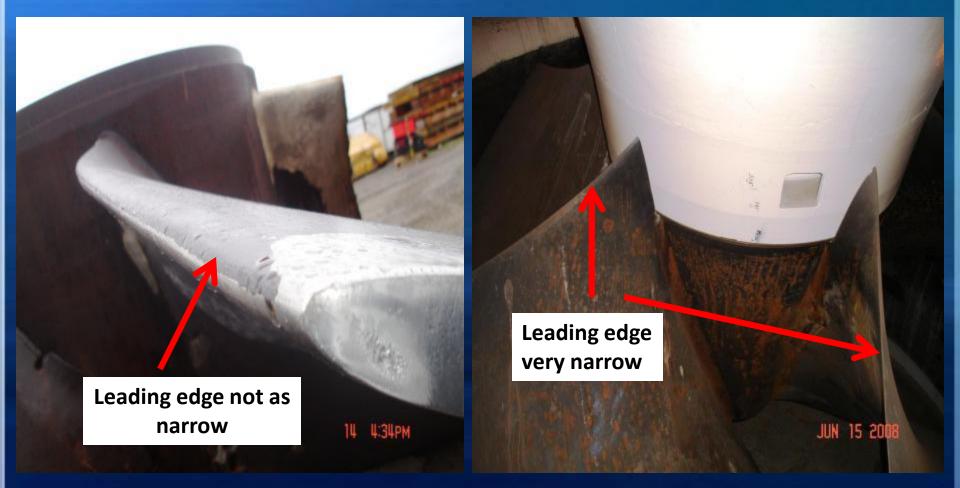
•Turbine passage survival at three different projects ranged from 78.6 to 92.4%.

•Malady-free ranged from 72.5 to 92.6%.

•The number of blades affected survival/injury rates, the lower the number of blades the higher the survival and lower the injury rates.

•Four bladed turbines were the most benign.

•The role of shape and thickness of the leading edge of the turbine blades on eel survival and injury needs to be further evaluated.



- Direct survival and injury estimates for the present study at Wilder, Bellows Falls, and Vernon indicate that the eels fared better passing through the larger and slower speed Francis turbines than through the Kaplan (propeller type) turbines.
- Higher survival through these Kaplan turbines is consistent with other direct survival/injury studies
- Survival relative to other Francis turbines has not been conducted (other than the similar FirstLight study conducted in 2015, not yet filed) so comparisons of this turbine type are not available at this time.
- Emigrating eels should incur high survival and few injuries passing the two larger Francis Units 9 and 10.
- Turbine passage should also be relatively high for eels passing the smaller Francis Units 1-4.
- Kaplan Units 5-8 effects on eel passage survival and severity of injuries appears to be partially dependent upon discharge rates with better passage conditions at lower discharges.

Turbine Comparison Example

2006 6 Bladed Turbine

2008 5 Bladed Turbine

Size and Thickness of Leading and Trailing Edge of Turbine Blade

The thinner and sharper an object is the greater the chance that it can cut something that contacts.

- Twelve studies indicate survival is related to number of blades, diameter, and rotation rate.
- Francis Units have generally higher survival than propeller units.

Questions and or Comments

