86 research outputs found

    Vivianite formation in methane-rich deep-sea sediments from the South China Sea

    Get PDF
    Phosphorus is often invoked as the ultimate limiting nutrient, modulating primary productivity on geological timescales. Consequently, along with nitrogen, phosphorus bioavailability exerts a fundamental control on organic carbon production, linking all the biogeochemical cycles across the Earth system. Unlike nitrogen that can be microbially fixed from an essentially infinite atmospheric reservoir, phosphorus availability is dictated by the interplay between its sources and sinks. While authigenic apatite formation has received considerable attention as the dominant sedimentary phosphorus sink, the quantitative importance of reduced iron-phosphate minerals, such as vivianite, has only recently been acknowledged, and their importance remains underexplored. Combining microscopic and spectroscopic analyses of handpicked mineral aggregates with sediment geochemical profiles, we characterize the distribution and mineralogy of iron-phosphate minerals present in methane-rich sediments recovered from the northern South China Sea. Here, we demonstrate that vivianite authigenesis is pervasive in the iron-oxide-rich sediments below the sulfate–methane transition zone (SMTZ). We hypothesize that the downward migration of the SMTZ concentrated vivianite formation below the current SMTZ. Our observations support recent findings from non-steady-state post-glacial sedimentary successions, suggesting that iron reduction below the SMTZ, probably driven by iron-mediated anaerobic oxidation of methane (Fe-AOM), is coupled to phosphorus cycling on a much greater spatial scale than previously assumed. Calculations reveal that vivianite acts as an important burial phase for both iron and phosphorus below the SMTZ, sequestering approximately half of the total reactive iron pool. By extension, sedimentary vivianite formation could serve as a mineralogical marker of Fe-AOM, signalling low-sulfate availability against methanogenic and ferruginous backdrop. Given that similar conditions were likely present throughout vast swathes of Earth's history, it is possible that Fe-AOM and vivianite authigenesis may have modulated methane and phosphorus availability on the early Earth, as well as during later periods of expanded marine oxygen deficiency. A better understanding of vivianite authigenesis, therefore, is fundamental to test long-standing hypotheses linking climate, atmospheric chemistry and the evolution of the biosphere.</p

    The Production and Fate of Volatile Organosulfur Compounds in Sulfidic and Ferruginous Sediment

    Get PDF
    Volatile organic sulfur compounds (VOSCs) link the atmospheric, marine, and terrestrial sulfur cycles in marine and marginal marine environments. Despite the important role VOSCs play in global biogeochemical sulfur cycling, less is known about how the local geochemical conditions influence production and consumption of VOSCs. We present a study of dimethyl sulfide (DMS), methanethiol (MeSH), and dimethylsulfoniopropionate (DMSP) in sulfide-rich (sulfidic) and iron-rich (ferruginous) salt marsh sediment from north Norfolk, UK. Initial results illustrate the importance of minimizing time between sampling in remote field locations and laboratory analysis, due to rapid degradation of VOSCs. With rapid analysis of sediment from different depths, we observe high concentrations of DMS, MeSH, and DMSP, with concentrations in surface sediment an order of magnitude higher than those in previous studies of surface water. We measure systematic differences in the concentration and depth distribution of MeSH and DMS between sediment environments; DMS concentrations are higher in ferruginous sediment, and MeSH concentrations are higher in sulfidic sediment. With repeated measurements over a short time period, we show that the degradation patterns for DMS and MeSH are different in the ferruginous versus sulfidic sediment. We discuss potential biogeochemical interactions that could be driving the observed differences in VOSC dynamics in ferruginous and sulfidic sediment.This work was supported by a Churchill Scholarship to J. V. W., NERC Grant NE/S001352/1 to A.V.T. and J. D. T., NERC Grant NE/K01546X/1 to K. R. R., and NERC Grants NE/P012671/1, NE/N002385/1, and NE/M004449/1 to J. D. T. Initial analyses were supported by ERCStG307582 (CARBONSINK) to A. V. T

    NMR multiple quantum coherences in quasi-one-dimensional spin systems: Comparison with ideal spin-chain dynamics

    Get PDF
    The 19F spins in a crystal of fluorapatite have often been used to experimentally approximate a one-dimensional spin system. Under suitable multi-pulse control, the nuclear spin dynamics may be modeled to first approximation by a double-quantum one-dimensional Hamiltonian, which is analytically solvable for nearest-neighbor couplings. Here, we use solid-state nuclear magnetic resonance techniques to investigate the multiple quantum coherence dynamics of fluorapatite, with an emphasis on understanding the region of validity for such a simplified picture. Using experimental, numerical, and analytical methods, we explore the effects of long-range intra-chain couplings, cross-chain couplings, as well as couplings to a spin environment, all of which tend to damp the oscillations of the multiple quantum coherence signal at sufficiently long times. Our analysis characterizes the extent to which fluorapatite can faithfully simulate a one-dimensional quantum wire.Comment: 14 pages, 11 eps color figure

    Assessing connectivity between an overlying aquifer and a coal seam gas resource using methane isotopes, dissolved organic carbon and tritium

    Get PDF
    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity

    Predominant sarcomatoid carcinoma of the lung concurrent with jejunal metastasis and leukocytosis

    Get PDF
    Sarcomatoid carcinoma is an extremely rare biphasic tumor characterized by a combination of malignant epithelial and mesenchymal cells. Limited data on sarcomatoid carcinoma showed that most cases occurred with advanced local disease and metastasis, and paraneoplastic syndromes were rare. We present the case of a 63-year-old man with lung sarcomatoid carcinoma associated with jejunum metastasis and leukocytosis, and its clinical, macroscopic, and histopathological features. This case emphasizes the importance of recognizing paraneoplastic syndromes and metastasis of sarcomatoid carcinoma at diagnosis
    • …
    corecore