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NMR multiple quantum coherences in quasi-one-dimensional spin systems:
Comparison with ideal spin-chain dynamics
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1Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA

2Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
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4Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
5Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

6Ames Laboratory, U.S. DOE, Iowa State University, Ames, Iowa 50011, USA
�Received 12 June 2009; published 17 November 2009�

The 19F spins in a crystal of fluorapatite have often been used to experimentally approximate a one-
dimensional spin system. Under suitable multipulse control, the nuclear-spin dynamics may be modeled to first
approximation by a double-quantum one-dimensional Hamiltonian, which is analytically solvable for nearest-
neighbor couplings. Here, we use solid-state nuclear magnetic resonance techniques to investigate the multiple
quantum coherence dynamics of fluorapatite, with an emphasis on understanding the region of validity for such
a simplified picture. Using experimental, numerical, and analytical methods, we explore the effects of long-
range intrachain couplings, cross-chain couplings, as well as couplings to a spin environment, all of which tend
to damp the oscillations of the multiple quantum coherence signal at sufficiently long times. Our analysis
characterizes the extent to which fluorapatite can faithfully simulate a one-dimensional quantum wire.

DOI: 10.1103/PhysRevA.80.052323 PACS number�s�: 03.67.Hk, 03.67.Lx, 75.10.Pq, 76.90.�d

I. INTRODUCTION

Low-dimensional quantum spin systems are the subject of
intense theoretical and experimental investigation. From a
condensed-matter perspective, not only do these systems
provide a natural setting for deepening the exploration of
many-body quantum coherence properties as demanded by
emerging developments in spintronics and nanodevices
�1–3�, but the ground states of one-dimensional �1D� conduc-
tors provide insight into the solution of the one-band Hub-
bard Hamiltonian �4�. From a quantum information perspec-
tive �5�, quantum spin chains have been proposed as
quantum wires for short-distance quantum communication,
their internal dynamics providing the mechanism to coher-
ently transfer quantum information from one region of a
quantum computer to another �6� �see also �7� for a recent
overview�. Perfect state transfer, in particular, has been
shown to be theoretically possible by carefully engineering
the couplings of the underlying spin Hamiltonian. A number
of efforts are underway to devise protocols able to achieve
reliable quantum information transfer under more realistic
conditions—bypassing, for instance, the need for initializa-
tion in a known pure state �8�, explicitly incorporating the
effect of long-range couplings �9–11�, or exploiting access to
external end gates �12,13�. Still, few �if any� physical sys-
tems can meet the required constraints and it is likely that
quantum simulators will be needed to experimentally imple-
ment these schemes. Of course, quantum simulators will in
turn allow us to probe a much broader range of questions
encompassing both quantum information and condensed-
matter physics �14�. Optical lattices have shown much prom-

ise in simulating quantum spin systems �15�. Among solid-
state devices, coupled spins in apatites have recently enabled
experimental studies of one-dimensional �1D� transport and
decoherence dynamics �16–18,44�.

Fluorapatite �FAp� has long been used as a quasi-1D sys-
tem of nuclear spins. Lowe and co-workers characterized
the nuclear magnetic resonance �NMR� line shape of FAp
�19,20� and described the dipolar dynamics of the free induc-
tion decay in terms of the 1D XY model �21�. Cho and Yes-
inowski investigated the many-body dynamics of FAp under
an effective double-quantum �DQ� Hamiltonian and showed
that the growth of high-order quantum coherences was dis-
tinctly different from that obtained in dense three-
dimensional �3D� crystals �22–24�. From a theoretical stand-
point, FAp provides a rich testbed to explore the controlled
time evolution of a many-body quantum spin system. The
DQ Hamiltonian is analytically solvable in the tight-binding
limit, where only nearest-neighbor �NN� couplings are
present �16,25,26�. Previous work showed that the imple-
mentation of a DQ Hamiltonian in the FAp system using
coherent averaging techniques is a promising tool for the
study of transport in quantum spin chains. We demonstrated,
in particular, that the DQ Hamiltonian is related to the
XY-Heisenberg Hamiltonian by a similarity transformation
and that it is possible to transfer polarization from one end of
the chain to the other under the DQ Hamiltonian �17�. In
fact, the signature of this transport shows up in the collective
multiple quantum coherence �MQC� intensity of the spin
chain. Experimentally, it has also been shown that it is pos-
sible to prepare the spin system in an initial state in which
the polarization is localized at the ends of the spin chain
�16�, paving the way toward achieving universal quantum
control �27�.

Since the mapping between the experimental system and
the idealized model �16,17� is not perfect, an essential step*lorenza.viola@dartmouth.edu
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forward is to address where and how this model breaks
down, which constitutes the main aim of this paper. In par-
ticular, we systematically examine the viability of using
NMR investigations of FAp as a test bed for 1D transport by
relying on a combination of experimental and numerical
methods. We first examine the effects on the relevant observ-
ables of experimental errors introduced during the imple-
mentation of the DQ Hamiltonian, which arise due to higher-
order terms in the average Hamiltonian describing the
effective spin evolution. We also examine errors introduced
in some state initialization sequences due to the restriction of
the control fields to collective rotations. Since the FAp crys-
tal is in reality a 3D lattice, we next investigate in detail how
the spin dynamics is affected by the presence of longer-range
couplings, both within a single chain and between adjacent
spin chains.

The content of the paper is organized as follows. We de-
scribe the quasi-1D spin system of FAp in Sec. II, including
the evolution in the absence of control as well as the dynam-
ics under suitable pulse sequences. In the same section, we
also discuss the system initialization and the readout of the
experimental MQC signal. Sections III and IV present both
experimental and numerical results of MQC dynamics and
are the core of the paper. By comparing the numerical results
to the analytical predictions available in the limiting case of
a DQ Hamiltonian with NN couplings, we evaluate the effect
of high-order average Hamiltonian terms, next-nearest-
neighbor �NNN� couplings, and cross-chain couplings be-
tween multiple chains. Our findings are summarized in Sec.
V. Appendix A presents technical background on the relevant
numerical methodology, whereas we also include in Appen-
dix B a description of finite-size effects as found in simula-
tions and in Appendix C a discussion of an alternative cha-
otic model for the spin bath.

II. PHYSICAL SYSTEM AND EXPERIMENTAL SETTINGS

A. Spin Hamiltonian of fluorapatite

We consider a single crystal of FAp �Ca5�PO4�3F� at room
temperature, placed in a strong external magnetic field along
the z direction that provides the quantization axis for the
nuclear spins. It is possible to truncate the magnetic dipolar
interaction among the spins in this strong field, keeping only
the secular terms. The resulting secular dipolar interaction
�28� among N 19F nuclear spin-1

2 is anisotropic due to the
presence of the quantization field, leading to a Hamiltonian
of the form

Hdip = �
j��

N

bj��� j
z��

z −
1

2
�� j

x��
x + � j

y��
y�� . �1�

Here, � j
� ��=x ,y ,z� denotes the Pauli matrices of the jth

spin and bj�= ��0 /16����2� /rj�
3 ��1–3 cos2 	 j��, with �0 the

standard magnetic constant, � the gyromagnetic ratio of fluo-
rine, rj� the distance between nucleus j and �, and 	 j� the
angle between r� j� and the z axis. The geometry of the spin
system is reflected in the distribution of the bj� couplings.

The FAp crystal has a hexagonal geometry with space
group P63 /m �29� �see Fig. 1�. The dimensions of the unit

cell are D=9.367 Å and c=6.884 Å. The 19F nuclei form
linear chains along the c axis, each one surrounded by six
other chains. The distance between two intrachain 19F nuclei
is d=c /2=3.442 Å and the distance between two cross-
chain 19F nuclei is D. The largest ratio between the strongest
intra- and cross-chain couplings ��40� is obtained when the
crystalline c axis is oriented parallel to the external field.
Thus, to a first approximation, in this crystal orientation the
3D 19F system may be treated as a collection of many iden-
tical 1D chains. For a single chain oriented along z, we have
bj�=−��0 /����2� /c3	j−�	3�.

In reality, naturally occurring defects in the sample �such
as vacancies or substitutions �30,31�� cause the chains to be
broken into many shorter chains. Here we model the system
as an ensemble of �approximately� independent and equiva-
lent chains with finite length. Such a simplified description is
necessary to obtain a computationally tractable model.

B. Control capabilities and effective dynamics

1. Unitary control

Unitary control is obtained by applying �near� resonant
radio-frequency �rf� pulses to the 19F spins in the system.
FAp contains 19F and 31P spins-1

2 , both of which are 100%
abundant. Moreover, in an ideal crystal, all the 19F spins are
chemically equivalent, as are all the 31P spins. As a conse-
quence, all rf control pulses are applied collectively to all the
spins, but are very far off resonance for the 31P spins.

In NMR, the term MQC refers to coherences between two
or more spins. When the system is quantized along the z axis,
a quantum coherence of order n is associated to the transition
between two states 	m1
 and 	m2
, such that the difference of
the magnetic moment along z of these states �m1−m2�
n.
That is, multiple quantum coherences of order n describe
states such as 	m2
�m1	 or elements in the density matrix that
correspond to a transition between these two states �32�.
Quantum coherences can also be classified based on their
response to a rotation around the z �quantization� axis. A
state of coherence order n acquires a phase proportional to n
under a z rotation. Multiple quantum NMR techniques
�33–37� have enabled researchers to probe multispin pro-
cesses and gain insight into the many-body spin dynamics of
dipolar-coupled solids �38–44�.

To study the MQC dynamics of the spin system, we typi-
cally let it evolve under the DQ Hamiltonian

d ~ 3.442 Å

D ~ 9.367 ÅF Ca

O
P

FIG. 1. �Color online� Unit cell of the fluorapatite crystal
�Ca5�PO4�3F�, highlighting the geometry of the fluorine chains �la-
beled by F�.

ZHANG et al. PHYSICAL REVIEW A 80, 052323 �2009�

052323-2



HDQ = �
j��

bj�

2
�� j

x��
x − � j

y��
y� = �

j��

bj��� j
+��

+ + � j
−��

−� , �2�

with � j
�= �� j

x� i� j
y� /2. Following �38,42�, we utilize a 16-

pulse cycle applied on-resonance with the 19F Larmor fre-
quency to implement the DQ Hamiltonian to lowest order in
the average Hamiltonian theory �AHT� description. While
AHT is discussed extensively in standard NMR textbooks
�28,45�, the basic idea is that the evolution of the system
under the applied periodic train of pulses may be described
as if occurring under a time-independent effective Hamil-
tonian HDQ. In our experiment, the cycle propagator reads

UMQ
x�y��Tc� = T exp�− i


0

Tc

�Hdip + Hrf
x�y��s��ds�

= exp��iHDQTc� , �3�

where �=1, T, and Tc denote the time-ordering operator and
the duration of each control cycle, respectively, and Hrf

x�y��t�
is the time-dependent Hamiltonian describing the rf-pulses
along the x �or y� axis �whereby the corresponding � sign in
front of the effective Hamiltonian�. By invoking the Magnus
expansion �45�, the actual Hamiltonian HDQ may be ex-
pressed as HDQ=��=0

� H���, where the lowest-order term
yields the desired target Hamiltonian, H�0�=HDQ and
�H����=O�Tc

��. Since the 16-pulse cycle used in the experi-
ment is time symmetric �46�, all odd-order corrections vanish
and the leading-error term in the cycle propagator is of order
O��H�2�Tc��. Remarkably, this is true both when considering
ideal and finite-width pulses. In addition, a key feature of the
implemented sequence is that the fluorine-phosphorus dipo-
lar interaction is also decoupled to the lowest order, which
makes it possible to ignore the presence of the 31P spins in
the rest of this paper.

2. Initialization capabilities

The spin dynamics under the DQ Hamiltonian depend
critically on the initial state in which the system is prepared.
Here, we focus our attention on two choices of direct experi-
mental relevance �16�. One is the equilibrium Zeeman ther-
mal state, which is obtained at the thermal equilibrium in a
strong external magnetic field �B0=7 T in our experiments�
at room temperature. The thermal state can be expressed as


th� �0� 
 exp�− ��z� � 1 − ��z, �4�

where �z=� j� j
z and �=�B0 /kBT, with kB the Boltzmann con-

stant and T the temperature ���10−5 at room temperature for
FAp�. Following standard theoretical convention, we use un-
normalized density matrices. In the product states, we also
omit the identity matrices which correspond to the spins in
the fully mixed states �i.e., which are in a mixture of “up”
and “down” states with equal weights�. The normalization is
taken into account when calculating the total NMR signal
�see below�. Also, in line with standard NMR practice, we
consider only the evolution due to the component propor-
tional to �, 
th�0�=�z, since the identity matrix does not
evolve or contribute to the MQC signal under the assumption
of unital dynamics. The second initial state that is experi-

mentally available is a mixture of states where only the spins
at the extremities of the chain are polarized, while the re-
maining are fully mixed. Such a state can be formally repre-
sented as


end�0� = �1
z + �N

z , �5�

where spin 1 and spin N are located at the two ends of the
spin chain �16�. We refer to this as the end-polarized state. A
description of the method used to create this state is given in
Sec. IV A 2.

3. Readout capabilities

In an inductively detected NMR experiment �in which a
coil is used to measure the average magnetization�, the ob-
served signal is S�t�=���−�t�
=� Tr��−
�t��, where �−

=� j� j
− and � is a proportionality constant. The only terms in


�t� that yield a nonzero trace, and therefore contribute to
S�t�, are angular-momentum operators such as � j

+, which are
single-spin, single-quantum coherences. Thus, in order to
characterize multispin dynamics, it is necessary to indirectly
encode the signature of the dynamics into the above signal.
This is precisely what is done in standard NMR multiple
quantum �MQ� spectroscopy using an evolution-reversal ex-
periment �32�. The density operator at the end of a MQ ex-
periment is given by


 f = UMQ
† UevolUMQ
iUMQ

† Uevol
† UMQ, �6�

where UMQ=exp�−iHDQt� and Uevol determines the nature of
the information encoded. A schematic of the implemented
procedure is given in Fig. 2.

In our experiment, we are interested in the evolution of
MQC under the DQ Hamiltonian, thus we measure the signal
as we systematically increase t. In order to encode informa-
tion about the distribution of the MQC, we apply a collective
rotation about the z quantization axis, Uevol=exp�−i��z /2�.
Then, to extract the coherence order distribution, the mea-
surement is repeated while incrementing � from 0 to 2�, in
steps of ��=2� /2K, where K is the highest order of MQC
encoded. The signal acquired in the kth measurement is then
Sz

k�t�=Tr�
k�t��z�, where 
k�t� is the density matrix evolved
under the propagator

FIG. 2. �Color online� NMR pulse sequence for the creation and
detection of MQC. �a� Three-step scheme for MQC experiments
�see also text�. The MQCs are first excited by evolution under the
DQ Hamiltonian �UMQ

x �. A � rotation along the z axis ���z /2� flags
each coherence in the state created. MQC are then refocused
�by UMQ

† � prior to measurement. �b� 16-pulse sequence used in the
experiments to create the DQ Hamiltonian. Bars are � /2 pulses
along the x or x̄=−x axis. The time delays between pulses are � and
��=2�+w, where w is the duration of the � /2 pulses.
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Uk�t� = exp�iHDQt�exp�− ik���z/2�exp�− iHDQt�

and we have assumed that �z is the experimental observable.
In practice, we use either a � /2 pulse or a solid echo �47� to
read out the signal at the end of the experiment. Fourier
transforming the output with respect to � yields the
coherence-order intensity

Jn�t� = �
k=1

K

Sz
k�t�e−ikn��. �7�

Note that since the initial states we consider are population
terms in the z basis, the final states at the end of the
evolution-reversal experiment are also population terms
�hence our use of the observable �z�.

III. MULTIPLE QUANTUM DYNAMICS:
SIMPLE MODEL AND EXPERIMENT

A. Ideal spin-chain dynamics

The fact that the evolution of the 1D spin chain under a
DQ Hamiltonian is exactly solvable in the tight-binding limit
�16,25,26� provides a useful starting point for theoretical
analysis. Hereafter, we shall refer to this model as the ana-
lytical model. Moreover, the DQ Hamiltonian is related to
the XY Hamiltonian by a similarity transformation that in-
verts every alternate spin in the chain �17,26�. Besides using
the analytical results to calibrate our numerical methods �see
Appendix A�, we will also investigate the effect of long-
range interactions beyond the NN limit by comparing nu-
merical and analytical results. For convenience, we set the
NN coupling strength in the DQ Hamiltonian of Eq. �2�
b�b12=1, so that time shall be measured in units of 1 /b
henceforth �unless explicitly stated otherwise�.

For both the thermal and the end-polarized initial state,
only zero and DQ coherences are predicted by the analytical
model. Specifically, for the thermal initial state, the normal-
ized intensities are

J0
th�t� =

1

N
�

k

cos2�4bt cos �k� ,

J2
th�t� =

1

2N
�

k

sin2�4bt cos �k� , �8�

where as before, N is the number of spins in the chain and
�k=k� / �N+1�. For the end-polarized initial state,

J0
end�t� =

2

N + 1�
k

sin2��k�cos2�4bt cos �k� ,

J2
end�t� =

1

N + 1�
k

sin2��k�sin2�4bt cos �k� . �9�

In both Eqs. �8� and �9�, the normalization is chosen such
that J0+2J2=1.

Here and below, we theoretically study spin chains
of moderate length, with N up to 21. Both previous studies

�49� and our investigation evidence that this limitation
does not seriously affect the validity of our results. Both
numerical and analytical calculations show that chains with
N�15–18 do not demonstrate any qualitative changes in the
dynamics �unless we consider very long times, see the last
paragraph of this section and Appendix B�. Thus, we expect
that our results are relevant for experiments, where most
chains are long and probably contain hundreds of spins.

B. Experimental results

The experiments were performed in a 7 T magnetic field
using a Bruker Avance Spectrometer equipped with a home-
built probe. The 19F frequency is 282.37 MHz. The experi-
mentally measured MQC data are shown in Fig. 3, along
with analytical predictions and simulation results under the
DQ Hamiltonian with NN and NNN couplings. Both the
time origin t0 and the coupling strength b were used as fitting
parameters in order to minimize the square of the difference
between the experimental and numerical data, that is,
�i	J0

exp�ti�−J0
num�b�ti− t0��	2. For the thermal initial state data

�upper row in Fig. 3�, the � /2 pulse length was 1.05 �s, the
interpulse delay � was varied from 2.9 to 5 �s, and the
number of loops was increased from 1 to 7. We set K=12
and incremented the phase in steps of 2� /24 to encode the
MQCs. For the end-chain initial state data �lower row in Fig.
3�, the � /2 pulse length was 0.93 �s, the end-state prepara-
tion time t1=30.3 �s, the interpulse delay � was varied
from 2.9 to 7.3 �s, and the number of loops increased from
1 to 8. We set K=16 and incremented the phase in steps of

FIG. 3. �Color online� Experimental data �0Q circles, 2Q stars,
4Q squares�, analytical results �red dash-dotted lines�, and least
square fit �blue dashed lines� of experimental data to numerical
calculations under the DQ Hamiltonian with NN and NNN cou-
plings of strength b and b /8, respectively. Error bars for the experi-
mental data were estimated from the standard deviation of the odd
quantum coherences from their ideal value of zero under the as-
sumption that any residual intensity originates from errors. Numeri-
cally, two free parameters, the time origin t0 and the time scale 1 /b,
are adjusted to obtain the best fit to the experimental data for J0.
�Top� Thermal initial state with chain length N=18. Fitting param-
eters t0=9.6 �s and 1 /b=101.8 �s. �Bottom� End-polarized initial
state with chain length N=19. Fitting parameters t0=0.2 �s and
1 /b=100.8 �s.
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2� /32 to encode the MQCs. In both cases, the recycle delay
was 300 s and a solid echo sequence with an eight-step phase
cycle was used to read out the signal intensities at the end of
the experiment.

The experimental data are normalized at every time step,
such that J0+2�J2+J4�=1 �using the fact that J−n=Jn�. The
intensities of the odd MQCs �not shown in Fig. 3� turn out to
be negligibly small. At short times �less than �0.2 ms�, Fig.
3 indicates that fourth- and higher-order even MQCs are also
negligible. However, the four-quantum coherence signal con-
tributes significantly at longer times. In 3D systems, includ-
ing both plastic crystals such as adamantane �48� and rigid
crystals such as the cubic lattice of 19F spin in CaF2 �40,43�,
very high coherence orders are seen to develop over a time
scale less than 1 ms, with no apparent restriction on the
highest order reached. In contrast, the fact that the MQ in-
tensities are restricted to the zero and DQ coherences, and
that the higher-order terms only grow relatively slowly dur-
ing the whole time domain we explored, are strong indica-
tions of the 1D character of the spin system. At the same
time, the appreciable intensity of the four-quantum coher-
ence at long evolution times clearly indicates that the ana-
lytical model �which predicts only zero and DQ coherences
for both the thermal and end-polarized initial states� becomes
inadequate to accurately describe the real system.

As mentioned, the maximum computationally accessible
chain length in simulations was N=21 spins. Though the fits
included in Fig. 3 use 18–19 spins, it is important to realize
that sensitivity of the dynamics to the precise value of N
develops only at sufficiently long times �as the effects of the
finite chain boundaries manifest—see Appendix B�, where
the accuracy of the simple model used to make the estimate
becomes itself limited. Note that earlier studies of Ref. �49�
came to the same conclusion as our investigation: the simu-
lations with chains longer than 15–18 spins do not demon-
strate qualitative changes in the spin dynamics. Thus, we
expect that our calculations �above and below� are sufficient
for a semiquantitative assessment of the MQC dynamics at
times which are not too long �sufficiently small with respect
to the so-called “mirror time,” see below�.

IV. MULTIPLE QUANTUM DYNAMICS: BEYOND
THE SPIN-CHAIN APPROXIMATION

In order to understand the discrepancies observed be-
tween the analytical model and the experimental results, it is
necessary to identify the dominant sources of nonideality in
the experiment and assess their respective effects. Below, we
analyze such sources, namely, the effects arising from the
limited control and the influence of the long-range intra- and
inter-chain dipolar couplings. Note that while long-range
couplings have been previously accounted for in a perturba-
tive limit �25�, we resort here to exact numerical simulations
�Appendix A�, while also considering other experiment-
related sources of errors.

A. Errors due to limited control

1. High-order terms in average Hamiltonian theory

As mentioned, experimentally the DQ Hamiltonian �2� is
obtained as the zeroth-order average Hamiltonian of a

multiple-pulse sequence, with leading corrections propor-
tional to �H�2�Tc�. The impact of high-order terms in the
Magnus expansion may be assessed by comparing the single-
cycle MQC signal computed using the exact DQ Hamil-
tonian and using the dipolar Hamiltonian �1� interspersed
with rf pulses, respectively. Assuming ideal instantaneous
pulses, we verified numerically that for the system of interest
such contributions are small provided that the cycle time
Tc�4 �see Fig. 4, inset�. In the experiment, we thus em-
ployed multicycle sequences in order to extend the region of
validity of the DQ model.

In order to determine how well we implemented the
evolution-reversal experiment described in Sec. II, we per-
formed a series of experiments that measured the overlap
between the initial and the final states following evolution
reversal. This overlap is given by

� = Tr�
thUMQ
y UMQ

x 
end�0�UMQ
x† UMQ

y† � , �10�

where 
end�0� is the end-polarized state and the observable
is the collective magnetization 
th=�z. To lowest order, UMQ

y

�see Eq. �3�� is approximately the inverse of UMQ
x . Thus, the

overlap � is close to maximal for short-cycle times. The
experimental data are shown in Fig. 4. Data were normalized
by fitting the decay to a normalized Gaussian curve. The � /2
pulse length used was w=0.93 �s, whereas the delay �
=2.9 �s. In normalized units �the NN coupling b
�8.3 kHz in practice�, this corresponds to Tc�0.72, indi-
cating that we are well within the regime where the contri-
butions of the higher-order terms can be neglected. Even as
� is increased to 7.3 �s in some of the experiments, Tc only
increases to �1.64 �in normalized units�, thus still within the
range where higher-order corrections are unimportant.

FIG. 4. �Color online� Overlap � for end-polarized initial state,
Eq. �10�. Normalized experimental data �circles� with a Gaussian fit
and numerical results for finite-width pulses �solid line� and nu-
merical results for finite-width pulses �solid line�. The chain length
in the numerical calculation is N=9, whereas the pulse length and
interpulse delay are w=0.0075, b�1 �s and �=0.0225b, respec-
tively, which are close to the experimental values. The shaded area
is the time region explored in the MQC experiments. �Inset� Abso-
lute value of the difference between J0 as calculated from the ana-
lytical model or the rf-pulsed dipolar Hamiltonian with the initial
thermal state under different chain lengths, as a function of cycle
time. Only NN couplings are considered in this case.
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This is confirmed by numerical simulations, also shown in
the main panel of Fig. 4. We prepared the end-polarized ini-
tial state in a matrix form for a system of nine spins and
evolved the system first forward under the DQ sequence with
pulses along the x axis then backward by using y pulses.
Considering that in practice the DQ coupling strength bij
�8.3 kHz and that finite-width corrections originate prima-
rily from the second-order average Hamiltonian, we expect
these corrections to be on the order of �bijw�2�6.9�10−5.
As seen in Fig. 4, the overlap from numerical calculations is
flat and close to unity, confirming that errors due to finite
widths and high-orders AHT contributions are small. Com-
parison to the experimental data suggests that other sources
of error are likely to be responsible for the long-term decay
of the overlap �45�. In particular, both rf and static-field in-
homogeneities can result in imperfect � /2 pulses, leading to
off-axis and pulse-length systematic errors. The latter errors
are actually minimized by the 16-pulse sequence thanks to
the use of phase alternation �28�. Furthermore, transient ef-
fects of square pulse always exist in pulse-driven experi-
ments. Notice that the MQC data of Fig. 3 were measured at
relatively short times, t�0.5 ms, for most of the data. This
corresponds to six cycles, thereby to high values of the over-
lap.

2. Initialization

The basic idea for preparing the end-polarized initial state
from the thermal state was introduced in �16�. Starting from
equilibrium, we first rotate the nuclear spins into the x-y
plane by a � /2 pulse along a direction �. We then allow the
system to evolve under the dipolar Hamiltonian of Eq. �1� for
a time t1 �=30.3 �s in the experiment, corresponding to 0.25
in normalized units� and finally rotate the spins back to the z
axis by a second � /2 pulse along the −� direction. During
time t1, the spins at both ends evolve roughly 1 /�2 times
slower than the internal spins due to the fact that each of
them has only one nearest neighbor, while any internal spin
has two. Let U� describe evolution under the pulse sequence
� /2 	�− t1−� /2 	�̄, where in the experiment the pulse axis �
is phase-cycled through the y and x axes. Given that the state
at time t1 is 
�t1�= �1 /N����U�
thU�

† , with N� being the
number of phase-cycling steps, the fidelity of the prepared

�t1� relative to the desired end-polarized state is

f�t1� =
Tr�
end
�t1��

�Tr�
end
2 �Tr�
2�t1��

. �11�

The difference between 
�t1� and 
end is due to the pre-
sence of zero MQC which are generated by the dipolar
Hamiltonian but are not removed by phase cycling, with
leading contributions from residual polarization on spins
2 and N−1 as well as correlated states of the form
�i

z��i−1
+ �i+1

− +�i−1
− �i+1

+ � �16�. The left panel of Fig. 5 depicts
the time dependence of the fidelity and the polarization of
the end and the central spins. Interestingly, the time that
maximizes fidelity �t1=0.25� does not coincide with the time
at which the central-spin polarization is zero �t1�=0.42�. Both
time points are almost independent of the chain length unless
N�4.

Starting from the two prepared states, t1=0.25 and t1�
=0.42, respectively, we calculate the MQC of the spin chain
under the DQ Hamiltonian with NN+NNN couplings and
compare the results against those obtained for the ideal end-
polarized initial state 
end�0�. The evolution of MQC for the
initial state prepared with t1�=0.42 is quite different from that
obtained with the intended state �data not shown�, while the
MQC of the initial state corresponding to preparation time
t1=0.25 is very close, as demonstrated in the right panel of
Fig. 5. Note, however, that compared to the ideal end-
polarized state, the experimentally prepared initial state
shows slightly larger oscillations, especially in J0.

B. Nonidealities in isolated single-chain dynamics

1. Long-range couplings

Appreciable growth of the four-quantum coherence signal
at long times �Fig. 3� indicates the deficiency of the analyti-
cal model. A single chain with only NN couplings would
preserve J4=0: as shown above, the higher-order terms in
Magnus expansion which may generate the four-quantum co-
herence are negligible in the temporal region we consider.
Thus, the corrections stemming from the long-range dipolar
coupling should be taken into account.

The intrachain NNN couplings constitute the most impor-
tant correction. Figure 6 shows the MQC signal obtained for
spin chains of lengths N=18 �top� and 19 �bottom� for the
thermal state �left� and the end-polarized state �right�, respec-
tively. Both NN and NNN couplings in the DQ Hamiltonian
are now exactly accounted for. By way of comparison, we
also include the predictions from the analytical model. The
following observations may be made:

�i� NNN couplings produce even-order coherences greater
than two, the largest contributions in the relevant time win-
dow arising from J4. In general, even-order coherences up to
the number N of spins in the chain may be expected �note
that a perturbative analysis can only yield MQC up to the
sixth order �25��. This confirms numerical results earlier es-
tablished for spin chains of up to N=15 �49�.

FIG. 5. �Color online� �Left panel� Evolution of the end- and
central-spin polarizations and fidelity during the preparation of the
end-polarized state. Chain length N=9, �=x, ȳ, and N�=2. The two
time points t1=0.25 and t1�=0.42 are marked with vertical dashed
lines. �Right panel� MQC signal of N=19 spin chain with prepara-
tion time t1=0.25. Intensities are normalized at every time as
J0+2�J2+J4�=1. DQ Hamiltonian with NN+NNN couplings and
the ideal end-polarized initial state. Solid lines: DQ Hamiltonian
with NN+NNN couplings and initial state synthesized at
t1=0.25—circles for J0, stars for J2, and squares for J4.
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�ii� NNN couplings reduce the amplitude of the oscilla-
tions in J0 and J2.

�iii� The effect of NNN couplings is amplified at an in-
stant in time that we call the mirror time, tm ��5 in the
figure�, which is defined in terms of the analytical model as
the time where J0 shows a second-largest oscillation for odd
N or the lowest point for even N. �Note that one could also
equivalently define tm as the time where the second lowest or
largest peak of J2 occurs.� This effect is prominent in the
numerical simulations, where one is necessarily constrained
to relatively short chains. Qualitatively �see also Appendix
B�, the spin dynamics has a mirror symmetry about the
middle spin, which causes the signal of specularly located
spins to “interfere constructively” at the mirror time. This
picture can also explain why the influence of NNN couplings
on the dynamics of the chosen collective observable is most
pronounced at this time: even small deviations from the ideal
NN dynamics are able to destroy the interferences and can
produce significant changes in the observed signal.

2. Chain length distribution

Since the defects in the FAp sample are nonuniform, the
spin chain length has a statistical distribution. According to
the so-called random-cluster model �23�, if defects are dis-
tributed randomly in the infinite 1D chain with a probability

�1− p�, the average chain length is N̄= �1+ p� / �1− p� and the

relative fluctuation �N / N̄=�2p / �1+ p�. For a low percent-

age of defects, �p�1, N̄�1�, the chain length distribution
can be reasonably approximated by a uniform distribution of
chain lengths. Figure 7 shows the averaged MQC signal for
an ensemble of chain lengths. Compared to an individual
spin chain, the ensemble average washes out the long-time
oscillations but leaves the short-time oscillations virtually
unchanged. Since the concentration of defects is low in the
actual sample, we expect that this effect will not be impor-
tant on the time scales explored by the current experiments.

C. Nonidealities due to coupled-chain dynamics

Due to the 3D nature of the FAp sample, a given spin
chain of interest �“central” spin chain henceforth� is coupled
to all other chains in the crystal via the long-range dipolar
coupling. Since the distance between two spin chains in FAp
is about three times the distance of two NN 19F spins, the
cross-chain couplings have about the same strength as the
third-neighbor intrachain coupling within a chain. The com-
bined effect is, however, amplified by the presence of six
chains surrounding the central-spin chain �Fig. 1�. Additional
weaker contributions arise from more distant chains. Overall,
the influence of the cross-chain coupling can thus be an im-
portant source of deviation from the analytical model.

Exactly modeling the influence of all chains on the central
one would require us to simulate the quantum dynamics of a
macroscopically large number of spins, which is beyond
reach. To make the problem tractable, we need to reduce the
many-body problem to a simpler model that represents as
faithfully as possible those features of the real dynamics we
are directly probing. In order to make sensible approxima-
tions, it is useful to reconsider the origin of the NMR signal
in more details. Let Mc be the number of chains present in
the crystal sample. In the high-temperature approximation,
the initial density matrix of the whole system can be ex-
pressed as


3D�0� = �
m=1

Mc


m�0� ,

where m indexes the chains and 
m�0� is either the thermal
equilibrium state or the end-polarized state as in Eqs. �4� and
�5�. Notice that due to its collective nature, the experimen-
tally accessible observable can also be written as a sum of
contributions from distinct chains. The signal Sz

k created by
the kth chain can be viewed as a sum of two terms, Sz

k�t�
=Sz,intra

k +Sz,leak
k , with

Sz,intra
k �t� = �

m=1

Mc

Tr��
j

�mj
z 
m

k �t�� , �12a�
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FIG. 6. �Color online� Effect of NNN interactions in the DQ
Hamiltonian: �left column—a and c� thermal and �right column—b
and d� end-polarized initial state. The length of the spin chain is
�top row—a and b� N=18 and �bottom row—c and d� N=19. Solid
blue �upper� and red �lower� lines are J0 and J2 computed from the
analytical model, respectively. Circles, stars, and squares are J0, J2,
and J4 obtained from exact numerical results.
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FIG. 7. �Color online� Ensemble average of MQC signal for the
thermal �left� and the end-polarized initial state �right� as resulting
from a DQ Hamiltonian with NN and NNN couplings. Circles,
stars, and squares �top to bottom� show J0, J2, and J4, respectively,
with chain length averaged over N= �17,21�. For comparison, the

solid lines are for a distribution of chains with average N̄=50 in the
random-cluster model, evolved under the analytical model, whereas
the dotted lines are for the zero and double quantum intensities for
an infinite chain �25�.
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Sz,leak
k �t� = �

m��m

Tr��
j

�m�j
z


m
k �t�� , �12b�

where 
m
k �t�=Uk�t�
m�0�Uk

†�t� �cf. Eq. �7��. These two terms
reflect two different mechanisms by which the presence of
cross-chain interactions can induce deviations of the experi-
mental signal from that of an isolated chain.

The term in Eq. �12a�, which we refer to as the intrachain
signal Sz,intra

k �t�, describes the signal obtained when both the
initial state and the observable belong to the same chain: all
other chains, which may initially be taken to be in the maxi-
mally mixed state, influence the reference chain in a “mean-
field sense” to the extent they modify 
m

k �t�. Were all the
chains identical, the resulting signal would simply be
Sz,intra

k �t��Mc Tr�Sz

k�t��, that is, an Mc-fold signal from a

single chain coupled to the “environment chains.” Thus,
Sz,intra

k �t� may be well described within a “chain-plus-
environment” model, where a single-spin chain is coupled to
a larger spin environment and the measured NMR signal is
determined completely by the reduced density matrix of the
central chain—upon tracing over all environment spins
�50–52�.

While the intrachain term describes a deviation from the
single-chain behavior that is not fundamentally different
from the deviations induced by long-range couplings �Sec.
IV B 1�, the leakage signal Sz,leak

k �t� in Eq. �12b� introduces
a qualitatively different effect: that is, the possibility that
some of the polarizations initially located on the mth chain
are transferred to the m�th chains and read out from there.
This signal is not captured by the central-system approach,
but as we show below, it is small. Since, from the point of
view of the central-spin chain, signal components would be
“lost” to the environment, a significant contribution Sz,leak

k �t�
would clearly indicate the inadequacy of a system-plus-
environment picture at capturing the complexity of the un-
derlying 3D strongly correlated dynamics.

Thus, we treat the problem at hand using the approxima-
tion of a single central chain coupled to a bath �made of all
other chains in the crystal� and justify this treatment a pos-
teriori by smallness of the leakage term. Still, modeling of
the realistic environment remains nontrivial because the ac-
tual crystal consists of a large number of quantum spin
chains, evolving according to a highly complex, non-
Markovian dynamics. In line with standard statistical ap-
proaches �including NMR relaxation theories� �53,28�, we
can reasonably argue that the main observed features should
be robust with respect to the details of the environment de-
scription as long as the relevant energy scales are correctly
reproduced. We exemplify these considerations by separately
investigating two models for the bath. In Sec. IV C 1, a sys-
tem of two coupled chains is investigated as a numerically
accessible test bed where the environment chain qualitatively
retains the spatial structure of the FAp crystal. Physically, the
latter feature is expected to be important �possibly essential�
to properly represent the deviation induced in the idealized
central-chain dynamics by the NN chains. In Sec. IV C 2, a
structureless spin-environment model is considered, whereby
the central chain couples to randomly placed spins. Physi-
cally, such a picture may be especially adequate to account

for the net influence of distant chains. Computational con-
straints limit the size of the accessible model environment in
both cases.

In spite of the above differences, it is important to realize
that essentially the same type of simulations will be em-
ployed and the same main physics will be explored in both
cases. In particular, the processes leading to deviations from
the analytical model are primarily associated with the in-
creased dimensionality of the Hilbert space and correlations
between different chains in the sample. While no explicitly
nonunitary evolution is present either in experiment or simu-
lation and the total system remains coherent at all times, a
damping of the low-order MQC oscillations still emerges: as
time progresses, a larger part of the Hilbert space is popu-
lated and coherences of higher order, which involve spins of
different chains, build up at the expense of low-order coher-
ences. Relative to the observables that can be directly
probed, the latter simply appear to unrecoverably decay.

1. Effect of a structured spin environment

The correlated dynamics in nearby chains may be inves-
tigated by lumping together the contributions of the six
nearest-surrounding chains and treating them as a single
chain, which couples coherently to the central-spin chain ac-
cording to the DQ Hamiltonian. We take both chains to have
length N and start in the initial state of interest �either ther-
mal or end-polarized�. Since we are restricted to numerically
calculate MQC for a system of up to 25 spins, N�12 in
practice. Upon summation �Mc=2 in Eqs. �12a� and �12b��,
an upper bound to the NN cross-chain coupling strength is
given by

b̄�

b
=

�b�

b
= − 3� d

D
�3

� − 0.1488. �13�

This approximation corresponds to neglecting correlations
between spins from three or more different chains, which
arise from higher-order cross-chain couplings in
Sz,leak

k �t�—e.g., the three-chain coupling is proportional to

�b̄� /b�2. If such couplings are treated perturbatively, one
may expect their effect to be negligible over the time scale of
the experiment, as opposed to two-chain interactions which
directly compete in strength with intrachain NNN couplings.
As discussed above, however, these two contributions may
have very different physical implications, as the cross-chain
coupling effect can genuinely increase the underlying Hilbert
space, whereas NNN couplings can only increase the portion
of the single spin-chain Hilbert space that is explored during
the dynamics.

Exact calculation of the total signal Sz
k�t� reveals that the

contribution of cross-chain transfer due to Sz,leak
k �t� remains

small �below a few percents� over relatively short time scales
�up to 5 in normalized units�. As shown in Fig. 8, cross-chain
couplings modeled in this way also damp the MQC oscilla-
tions at long times, similar to the effect of intrachain NNN
interactions. Notice that at the mirror time, as observed in
simulations with finite N, the effects of the cross-chain cou-
plings are also amplified, further reducing the peak ampli-
tude �54�.
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2. Effect of a structureless spin environment

In order to analyze another aspect of the cross-chain cou-
pling, which emphasizes the influence of far away chains, we
consider an effectively structureless quantum spin environ-
ment �55�. In particular, the simplest choice is provided by a
system consisting of spins arbitrarily scattered in space.
While of course nothing is arbitrary in the dynamics of the
real FAp system, such a model may just be viewed as a
computationally accessible approximation of the complex
dynamics under investigation.

Specifically, we reproduce the main features and the char-
acteristic energy scales of the FAp sample driven by the 16-
pulse sequence by assuming that the x, y, and z coordinates
of each of the nine environment spins are drawn uniformly
from �−1,1�. The N=11 spins of the central chain are placed
equidistantly on the z axis, with their z coordinates also con-
fined between −1 and 1. The minimum distance between any
pair of spins �whether environment or chain spins� is re-
stricted to exceed 0.1 to prevent spins from being too close
to each other. The central chain Hamiltonian of the form �1�
is truncated at either the NN or NNN level �Figs. 9 and 10,
respectively�. All the dipolar couplings between the environ-
ment spins and from the environment spins to the central-
spin chain are taken into account, as in Eq. �1�, with the
coupling constants bj� calculated from the spins coordinates.
However, in order to have correct energy scales, all chain-
environment coupling constants are rescaled to produce the
correct value of the energy dispersion Tr�HCB

2 �, where HCB is
the chain-environment interaction Hamiltonian �see also Ap-
pendix C�. This ensures that the couplings between the spins
of different chains in FAp are �40 times smaller than the
couplings between the spins in the same chain. In a similar
way, all couplings inside the environment are rescaled to
produce a correct value for the Hamiltonian norms per spin,
Tr�HC

2 �=Tr�HB
2�, where HC and HB are the chain and envi-

ronment Hamiltonians, respectively.

We perform simulations of the total system treating it as a
closed system with unitary dynamics �see Appendix A for
details�. We simulate the evolution under the experimental
DQ Hamiltonian generated by the 16-pulse sequence. Each
sequence with 16 pulses along the x axis �preparation� and,
afterward, the 16-pulse sequence with pulses along the y axis
�mixing� is repeated 5 times. The pulses are ideal �-like, with
varying interpulse separations, and the total time is varied
from zero to 18.75 �in normalized units�. Note that since the
environment is homonuclear, it is affected by the pulses in
the same way as the central chain. At the end of each proto-
col, the total NMR signal Sz

k�t� is calculated by either �i�
summing only the z projections of the spins in the central
chain, tracing out the environment spins �thus obtaining only
the intrachain contribution of Eq. �12a�, or �ii� summing the
z projections of both the environment and the chain spins
�thus also taking into account the leakage terms in Eq.
�12b��. Comparison between the results �i� and �ii� shows
that the leakage terms are small, on the order of about 1%.
As in the two-chain model, we thus confirm a posteriori the
validity of the underlying weak-coupling assumption be-
tween the central system and the rest.
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FIG. 8. �Color online� Effect of cross-chain couplings for the
thermal �top� and the end-polarized state �bottom�. The length of
each spin chain is N=11. Dotted lines represent the analytical
isolated-chain NN prediction. Both NN and NNN couplings are
considered in the exact simulation results for a single chain �dashed
lines� as well as for two chains �solid lines� coupled according to
Eq. �13�.

FIG. 9. �Color online� J0�t�, J2�t�, and J4�t� �top to bottom� for
a chain of N=11 spins with thermal �left� and end-polarized �right�
initial states. The chain is coupled to an environment of nine spins
with random dipolar couplings. Lines are the analytical results for
J0�t� and J2�t�. Note that only NN intrachain couplings are in-
cluded, however, the times scales explored here are significantly
longer than in any of the previous figures.

FIG. 10. �Color online� Comparison between the effect of cross-
chain couplings starting from the thermal state, as resulting from a
structured two-chain system �solid lines� or from a coupling to a
randomized spin �circles�. In all cases, the length of the spin
chain�s� is N=11 and NNN intrachain couplings are included. Dot-
ted lines represent the analytical prediction. Numerical results for
J0�t� �blue�, J2�t� �red�, and J4�t� �black�, from top to bottom,
MQCs are included.
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Numerical results starting from the thermal and the end-
polarized state are given in Fig. 9 for a single realization of
such a random dipolarly coupled environment, correspond-
ing to a fixed �arbitrary� geometry of the spin lattice. While
different realizations give very close results �less than 2%
difference, data not shown�, averaging over several realiza-
tions is impractical �56�. Figure 9 also includes a comparison
of the simulation results for J0,2�t� with the analytical model.
The interaction with the environment leads to a significant
damping of the oscillations of J0�t� and J2�t� and to an over-
all decay of these coherences. Interestingly, the decay of both
J0�t� and J2�t� for the end-polarized initial state is slower
than for the thermal initial state. Likewise, it is also worth
noticing that the decay of the oscillations in J2 is roughly a
factor of 2 slower than the decay of J0. This difference may
be attributed to the fact that the random dipolarly coupled
environment is not fully structureless, as it possesses non-
trivial integrals of motion �for instance, the total magnetiza-
tion of the central chain and the environment�. The internal
structure of the environment appears to strongly affect the
dynamics of J2�t�. This different behavior of the two MQC
intensities is also present in the two coupled-chain simula-
tions of Sec. IV C 1, which are directly contrasted to the
random spin-environment simulation results in Fig. 10. We
further expand on these considerations by examining a cha-
otic spin bath model in Appendix C.

V. DISCUSSION AND CONCLUSION

We have investigated in detail the MQC dynamics of a
quasi-1D spin chain in a fluorapatite crystal, both experimen-
tally and numerically. By comparing exact simulation results
to analytical solutions for the ideal DQ Hamiltonian with NN
couplings, we have characterized the region of validity of
this simple, single-chain NN model. For the initial states and
observables of interest, we have found that for evolution
times up to 0.5 ms �corresponding to about 5 times the in-
verse NN coupling strength�, the system is experimentally
indistinguishable from the single-chain, NN model. Simula-
tions including long-range couplings within a single chain
and across different chains reproduce well the experimental
data.

Beyond this time, the evolution deviates from the analyti-
cal model, although the deviations of the selected observ-
ables �the MQC� remain small. In principle, the experimental
implementation of the DQ Hamiltonian using a simulation
approach based on AHT is not a problem, at the evolution
times considered. In addition, the dynamics of the experi-
mentally created end-polarized initial state are seen to remain
quite close to the dynamics of an ideal end-polarized state, as
desired.

From simulations, we observed that while the largest cor-
rections arise from NNN interactions, all the different types
of long-range couplings analyzed lead to a qualitatively simi-
lar damping of the oscillations in the MQC signal and a
relatively slow growth of the higher-order coherences �in
particular the four-quantum coherence�. In fact, a similar ef-
fect is also observed for a single chain coupled to a dipolar
spin environment.

The similar behavior observed when introducing longer-
range couplings in a 1D chain and cross-chain couplings
seems to indicate that although in the second case there are
more pathways available for the propagation of multispin
correlations, this effect cannot be observed in the MQC evo-
lution. While it could be tempting to infer that the micro-
scopic mechanisms leading to the observed behavior are to
some extent similar in each case, it is also essential to ac-
knowledge that the experimentally accessible, collective
magnetization observable provides a highly coarse-grained
visualization of the overall dynamics.

From a many-body physics standpoint, a deeper under-
standing of the influence of the structure of the longer-range
dipolar couplings �internal environment� on MQC dynamics,
in particular of the potentially higher level of sensitivity
found for higher-coherence orders, is certainly very desir-
able. Lastly, from a quantum communication perspective, our
work calls attention to the added challenges that transport
protocols need to face in the presence of limitations in avail-
able control, initialization, and readout capabilities, as well
as long-range interactions and/or unwanted interactions with
uncontrolled degrees of freedom. Our study points out that
for the realization of precise transport, simply isolating a 1D
system is not enough, as the deviation from an ideal NN
model in a 1D chain caused by long-range couplings is as
important as cross-chain couplings. Since a number of these
issues are shared by all practical device technologies to a
greater or lesser extent, it is our hope that our analysis will
prompt further theoretical investigations of communication
protocols under realistic operational and physical constraints.
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APPENDIX A: NUMERICAL METHODS

For short spin chains, N�11, we propagate exactly the
density matrix of the system in time. That is, given an initial
mixed state �either the thermal or the end-polarized state�, we
prepare the initial density matrix, obtain the density matrix at
time t, and calculate the MQC signal according to Eq. �7�.
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For longer spin chains, this approach becomes very inef-
ficient due to the high usage of computer memory �on the
order of 4N for a chain with N spins�. Instead, we employ a
wave-function-based simulation method whose memory us-
age scales as 2N. To implement it, we decompose the initial
mixed density matrix of the system into a sum of N �for the
thermal state� or two �for the end-polarized state� individual
density matrices and then approximate the jth density matrix
with a product state of a known state of spin j and a pure
random state of the remaining spins �57,58�. That is, we let

� j
z =

1

2
�1 j − 	↓ j
�↓ j	� � 	rj
�rj	 ,

where 	rj
=�i=1
2N−1

ci	i
 is a linear combination of basis states
of all spins except the jth spin and ci are independent iden-
tically distributed random complex numbers obeying

�i=1
2N−1

	ci	2=1. Such a superposition is an exponentially accu-
rate representation of the maximally mixed state and in our
simulations creates errors of about 0.5%. After preparing the
initial wave function, we propagate it in time, exactly solving
the Schrödinger equation �57,59�, by efficiently calculating
the action of the evolution operator using its expansion in
terms of Chebyshev polynomials. This approach differs from
the numerical technique employed, e.g., in Ref. �49�: the
latter relies on direct diagonalization of the Hamiltonian and
scales roughly as 23N, while our approach scales as 2N.

In the calculation of the MQC signal for the system plus
environment, an alternative way to prepare the initial state is
used by realizing that the initial density matrix may be ex-
pressed in terms of spin operators as follows. Let 	R

=�i=1

2N
ci	i
 be a random wave function of N spins and 	R�


=� j=1
N � j

z	R
. Then we may simply write 
�0�= 	R�
�R	. The
propagation of these two wave functions is then imple-
mented based on the methods mentioned above.

APPENDIX B: MIRROR TIME

Besides the peak �dip� of the MQC signal and the ampli-
fication of the NNN coupling effects at the mirror time tm,
the following features may be interesting for spin transport in
short spin chains:

�i� The mirror time increases linearly with the length of
the spin chain N as shown in Fig. 11�a�.

�ii� For the same length spin chain, different locally po-
larized initial states have the same mirror time �of course, the
thermal state, which may be seen as a mixture of different
locally polarized initial states, also exhibits the same mirror
time� �see Figs. 11�b� and 11�c��.

�iii� The NNN couplings shift the mirror time slightly.
These peculiar properties demand a better understanding

of the physical meaning of the mirror time. In a picture of
spin-polarization transport along a chain �17�, starting from
the end-polarized state where the polarization is pinned to
spins 1 and N, the polarization is transported to the central
spin �N−1� /2 at the mirror time tm �we assume N is odd for
simplicity�. As mentioned in the main text, the spin dynamics
exhibits a mirror symmetry about the central spin and thus
interferes constructively at tm. For other pairs of locally po-

larized initial states, for instance � j
z and �N+1−j

z , the spin po-
larization also interferes constructively at the mirror time.
The independence of tm on j guarantees that the thermal state
shows the same properties at tm as the end-polarized state.

APPENDIX C: CHAOTIC BATH MODEL

Since in simulations we cannot exactly reproduce the
many-body dynamics occurring in the FAp crystal, approxi-
mations are necessary at a number of levels. In representing
the dynamics in terms of a single chain coupled to a bath, the
random dipolarly coupled environment model used in the
main text �Sec. IV C 2� imposes a structure on the environ-
ment that is motivated by the physical system itself. From an
open-system perspective, however, it may be interesting to
explore alternative models for the bath in order to have a
sense of which details are important for the system’s dynam-
ics and which are not. These alternative bath models may in
turn provide additional physical insight on the action of a
spin bath in FAp. In this venue, it is useful to observe that
quantum systems possessing a very complex behavior often
exhibit similar features and relevant aspects of their dynam-
ics may be captured by quantum chaotic models �60�. Fol-
lowing this approach, we emulate the bath’s internal dynam-
ics using a chaotic spin-glass shard Hamiltonian �61,62�. As
a main feature, the chaotic bath model assumes that no inte-
grals of motion exist for the bath other than the energy. This
differs from the dipolarly coupled environment model �and
the real FAp sample�, where the environment chains are
similar to the central chain and, in the absence of pulses, the
total magnetization of the central chain and the bath is con-
served.

Specifically, we choose the chain-bath coupling to mimic
the arrangement of FAp samples: each chain spin is coupled
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FIG. 11. �Color online� �a� J0 for the end-polarized initial state
of different length spin chains �DQ Hamiltonian with NN+NNN
couplings�. Dashed line is a visual guide to the mirror time. �b� J0

for the thermal initial state and �c� its partition for different locally
polarized initial state �i

z �i=1,2 , . . . ,9�. Due to the mirror symme-
try of the chain, only half of the initial states are presented in panel
�c�. Each curve is shifted upward 0.5 for a better view. The vertical
dashed line specifies the position of mirror time tm. For �b� and �c�,
the length of the spin chain is N=17.
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to six bath spins, the coupling has a homonuclear secular
dipolar form, similar to Eq. �1�, and the coupling constants
bj� for each pair of a chain and a bath spin are drawn uni-
formly from �−�3�0.025, �3�0.025�. This ensures that
the rms coupling between one bath spin and one chain spin is
equal to the experimental value b� /b�0.025 �see Eq. �13��.
Nine bath spins are located on a 3�3 square lattice, with a
Hamiltonian

HB = �
�k,l


�klSk
xSl

x + �
k

hk
zSk

z + �
k

hk
xSk

x, �C1�

where the summation in the first term is over NN pairs. The
random couplings �kl and the local magnetic fields hk

x,z

are drawn uniformly from the intervals �−�0 , �0� and
�−h0 , h0�, respectively, with the values of �0 and h0 adjusted
to ensure �i� chaotic regime and �ii� correct characteristic
energies for the spin dynamics inside the bath. To achieve the
latter, note that for a FAp chain with NN couplings only and
N�1 spins, Tr H2= �6 /16�N Tr 1, so that the rms energy per
spin is 6/16. Correspondingly, the values of �0 and h0 were
adjusted to give approximately the same rms energy per spin.

The results of the simulations for the thermal initial state
and for the end-polarized initial state are given in Fig. 12. It
is clearly seen that the interaction with the bath leads to
significant damping of the oscillations of J0�t� and J2�t� and
to an overall decay of these coherences, although the mirror
time remains clearly visible. Interestingly, as also noted in
the text, the decay of the zero- and second-order coherences
J0�t� and J2�t� for the end-polarized state is slower than for

thermal state. To further appreciate this, we compare the dy-
namics of J0�t� and J2�t� for the two bath models we exam-
ined in Fig. 12. The J0�t� signals for both bath models stay
close to each other, while exhibiting significant damping of
oscillations and overall decay in comparison to the analytical
results for the isolated chain. In contrast, J2�t� for the random
dipolarly coupled environment stays rather close to the ana-
lytical prediction for the isolated chain, whereas J2�t� for the
chaotic bath decays in the same way as J0�t� does. This sug-
gests that the presence of extra integrals of motion does not
significantly affect the dynamics of J0�t�, whereas higher-
order MQCs might more sensitively depend upon details of
the open-system dynamics.
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