89 research outputs found

    Nematic suspension of a microporous layered silicate obtained by forceless spontaneous delamination via repulsive osmotic swelling for casting high-barrier all-inorganic films

    Get PDF
    Exploiting the full potential of layered materials for a broad range of applications requires delamination into functional nanosheets. Delamination via repulsive osmotic swelling is driven by thermodynamics and represents the most gentle route to obtain nematic liquid crystals consisting exclusively of single-layer nanosheets. This mechanism was, however, long limited to very few compounds, including 2:1-type clay minerals, layered titanates, or niobates. Despite the great potential of zeolites and their microporous layered counterparts, nanosheet production is challenging and troublesome, and published procedures implied the use of some shearing forces. Here, we present a scalable, eco-friendly, and utter delamination of the microporous layered silicate ilerite into single-layer nanosheets that extends repulsive delamination to the class of layered zeolites. As the sheet diameter is preserved, nematic suspensions with cofacial nanosheets of ≈9000 aspect ratio are obtained that can be cast into oriented films, e.g., for barrier applications

    Site specific and localized structural displacements in open structured multimetallic oxides

    No full text
    The structures of solids can locally differ from the macroscopic picture obtained by structural averaging techniques. This difference significantly influences the performance of any functional material. Measurements of these local structures are challenging. Thus, the description of defects is often disregarded. However, in order to understand the functionality, such irregularities have to be investigated. Here, we present a high resolution scanning transmission electron microscopic (STEM) study revealing local structural irregularities in open structured oxides using catalytically active orthorhombic (Mo,V,Te,Nb)Ox as a complex example. Detailed analysis of annular dark field- and annular bright field-STEM images reveal site specific local structural displacements of individual framework and channel sites in the picometer range. These experimental observables can be considered as an important structural addendum for theoretical modelling and should be implemented into the existing data in order to quantify site specific potential energies and stresses. This information can further be used to describe the impact of the structure on the catalytic performance in greater detail

    Operando Structure Activity Stability Relationship of Iridium Oxides during the Oxygen Evolution Reaction

    Get PDF
    Creating active and stable electrodes is an essential step toward efficient and durable electrolyzers. To achieve this goal, understanding what aspects of the electrode structure dictate activity and catalyst dissolution is key. Here, we investigate these aspects by studying trends in the activity, stability, and operando structure of iridium oxides during the oxygen evolution reaction. Using operando X-ray photoelectron and X-ray absorption spectroscopy, we determined the near-surface structure of oxides ranging from amorphous to crystalline during the reaction. We show that applying oxygen evolution potentials universally yields deprotonated Ό2-O moieties and a Ό1-O/Ό1-OH mixture, with universal deprotonation energetics but in different amounts. This quantitative difference mainly results from variations in deprotonation depth: surface deprotonation for crystalline IrO2 versus near-surface deprotonation for semicrystalline and amorphous IrOx. We argue that both surface deprotonation and subsurface deprotonation modify the barrier for the oxygen evolution and Ir dissolution reactions, thus playing an important role in catalyst performance

    Al<sub>2</sub>Pt fĂŒr die Sauerstoffentwicklungsreaktion bei der Wasserspaltung: eine Strategie zur Erzeugung von MultifunktionalitĂ€t in der Elektrokatalyse

    Get PDF
    Die Herstellung von Wasserstoff durch Wasserelektrolyse ist nur möglich, wenn wirksame und stabile Katalysatoren fĂŒr die Sauerstoffentwicklungsreaktion (Oxygen Evolution Reaction, OER) verfĂŒgbar sind. Intermetallische Verbindungen mit genau definierter Kristallstruktur und elektronischen Eigenschaften sowie besonderer chemischer Bindung werden als Vorstufe fĂŒr neue Werkstoffe vorgeschlagen, die interessante katalytische Eigenschaften aufweisen. Al2Pt kristallisiert im Anti‐Fluorit‐Kristallstrukturtyp und zeigt eine stark polare chemische Bindung. Platin ist hierbei katalytisch aktiv und wird auch unter den Bedingungen der Sauerstoffentwicklungsreaktion vergleichsweise wenig aus der KatalysatoroberflĂ€che herausgelöst. Im Folgenden wird die unerwartete LeistungsfĂ€higkeit einer OberflĂ€chen‐Nanokomposit‐Architektur beschrieben, die aus der selbstorganisierten Umwandlung der intermetallischen Vorstufe Al2Pt resultiert. Hierbei wird insbesondere das Langzeitverhalten der katalytischen AktivitĂ€t und StabilitĂ€t unter den Bedingungen der Sauerstoffentwicklungsreaktion untersucht

    Direct imaging of structural disordering and heterogeneous dynamics of fullerene molecular liquid

    Get PDF
    Structural rearrangements govern the various properties of disordered systems and visualization of these dynamical processes can provide critical information on structural deformation and phase transformation of the systems. However, direct imaging of individual atoms or molecules in a disordered state is quite challenging. Here, we prepare a model molecular system of C70 molecules on graphene and directly visualize the structural and dynamical evolution using aberration-corrected transmission electron microscopy. E-beam irradiation stimulates dynamics of fullerene molecules, which results in the first-order like structural transformation from the molecular crystal to molecular liquid. The real-time tracking of individual molecules using an automatic molecular identification process elucidates the relaxation behavior of a stretched exponential functional form. Moreover, the directly observed heterogeneous dynamics bear similarity to the dynamical heterogeneity in supercooled liquids near the glass transition. Fullerenes on graphene can serve as a new model system, which allows investigation of molecular dynamics in disordered phases

    Synergistic icephobic behaviour of swollen nitrile butadiene rubber graphene and/or carbon nanotube composites

    Get PDF
    Spontaneous change of adhesion of solidifying liquid on surfaces is of significant importance in materials technology where it finds applications such as anti-icing components operating in extreme environments like those of seals. In this work, nitrile butadiene rubber (NBR) composites reinforced with graphene, carbon nanotubes, and a mix of them after immersion in several fluids, experienced both a swelling and a reduction of the cross-link density that reduces ice adhesion, being this effect more evident for graphene containing samples. These results have been rationalized via a first principles atomistic modellization of interfaces formed by ice water of increasing thickness and graphene and scaling laws from fracture mechanics, revealing a clear synergy between swelling and nanocarbon phase in the icephobic nature of the composite, dictated by a competition between elastic modulus and adsorption energy. These findings could find an upscale in component validation readily applied to different areas where de-icing demands handling of large amount of environmental harmful agents.GG wants to thank CINECA [grant number HP10CN7DI0] and acknowledge PRACE for awarding us access to resource Marconi based in Italy at CINECA [Grant number Pra14_3664]. G.G. is similarly grateful to CARIT [grant number FCARITR17FR]” for supporting this research. MALM thanks the support from the MINECO [grant number MAT2016- 81138-R]. NMP is supported by the European Commission under the Graphene Flagship Core2 [WP14 “Composites” grant number 785219] and FET Proactive “Neurofibres” [grant number 732344]. NMP is supported by theItalian Ministry of Education, University and Research (MIUR) under the “Departments of Excellence” grant L.232/2016. LV is supported by the European Commission under the Graphene Flagship Core2 [WP14 “Composites” grant number 785219]. LV and GG rea supported by the Italian Ministry of Education, University and Research (MIUR) under the “Departments of Excellence” grant L.232/2016Peer Reviewe

    Graphene versus MoS2: A short review

    Full text link

    A quasi in situ TEM grid reactor for decoupling catalytic gas phase reactions and analysis

    Get PDF
    We present a versatile grid reactor setup for transmission electron microscopy (TEM), which is able to track catalytic conversion on TEM amounts of sample. It is based on the concept of decoupling catalytic gas-phase reactions from the structural analysis of identical particles before and after reaction. The system has superior properties in terms of image resolution and long-term measurements compared to conventional in situ TEM analysis. Monitoring catalytic conversions on a TEM grid is enabled by proton-transfer reaction mass spectrometry. In addition, identical location imaging benefits from a secure transfer of the sample between TEM and the reactor system by vacuum transfer holders. Using Pt and Cu/ZnO/Al2O3 as an example we show that structural changes of identical particles or areas of a Pt foil before and after reactive experiments can be tracked. During catalytic testing the samples are exposed to homogeneous reaction conditions. The concept minimizes electron-sample and electron-atmosphere interactions and can prospectively be considered as complementary tool to in situ TEM analysis

    Surface titration of supported Ni catalysts by O<sub>2</sub>-pulse thermal analysis

    No full text
    A new method for determining the Ni0 metal surface area of MgO supported catalysts is proposed. Different series of MgO supported Ni catalysts were prepared and titrated by chemical adsorption of oxygen inside an STA-MS setup. Simultaneous recording of the mass gain upon oxidation, the enthalpy of formation of the oxide and the evolved gas allowed a precise quantification of the metallic Ni surface area. In addition, any uncertainties linked with the complex Ni oxide stoichiometry could be ruled out. A comparison of the newly developed oxygen pulse method with already established techniques using H2 or N2O confirmed the applicability of the method and further revealed its surface sensitivity and accuracy with respect to MgO supported Ni catalysts
    • 

    corecore