7,538 research outputs found

    Fermionic Ising Glasses with BCS Pairing Interaction. Tricritical Behaviour

    Full text link
    We have examined the role of the BCS pairing mechanism in the formation of the magnetic moment and henceforth a spin glass (SG) phase by studying a fermionic Sherrington-Kirkpatrick model with a local BCS coupling between the fermions. This model is obtained by using perturbation theory to trace out the conduction electrons degrees of freedom in conventional superconducting alloys. The model is formulated in the path integral formalism where the spin operators are represented by bilinear combinations of Grassmann fields and it reduces to a single site problem that can be solved within the static approximation with a replica symmetric Ansatz. We argue that this is a valid procedure for values of temperature above the de Almeida-Thouless instability line. The phase diagram in the T-g plane, where g is the strength of the pairing interaction, for fixed variance J^2/N of the random couplings J_{ij}, exhibits three regions: a normal paramagnetic (NP) phase, a spin glass (SG) phase and a pairing (PAIR) phase where there is formation of local pairs.The NP and PAIR phases are separated by a second order transition line g=g_{c}(T) that ends at a tricritical point T_{3}=0.9807J, g_{3}=5,8843J, from where it becomes a first order transition line that meets the line of second order transitions at T_{c}=0.9570J that separates the NP and the SG phases. For T<T_{c} the SG phase is separated from the PAIR phase by a line of first order transitions. These results agree qualitatively with experimental data in Gd_{x}Th_{1-x}RU_{2}.Comment: 26 pages, 5 figures, to appear in The European Physical Journal

    Charged Particles and the Electro-Magnetic Field in Non-Inertial Frames of Minkowski Spacetime: I. Admissible 3+1 Splittings of Minkowski Spacetime and the Non-Inertial Rest Frames

    Full text link
    By using the 3+1 point of view and parametrized Minkowski theories we develop the theory of {\it non-inertial} frames in Minkowski space-time. The transition from a non-inertial frame to another one is a gauge transformation connecting the respective notions of instantaneous 3-space (clock synchronization convention) and of the 3-coordinates inside them. As a particular case we get the extension of the inertial rest-frame instant form of dynamics to the non-inertial rest-frame one. We show that every isolated system can be described as an external decoupled non-covariant canonical center of mass (described by frozen Jacobi data) carrying a pole-dipole structure: the invariant mass and an effective spin. Moreover we identify the constraints eliminating the internal 3-center of mass inside the instantaneous 3-spaces. In the case of the isolated system of positive-energy scalar particles with Grassmann-valued electric charges plus the electro-magnetic field we obtain both Maxwell equations and their Hamiltonian description in non-inertial frames. Then by means of a non-covariant decomposition we define the non-inertial radiation gauge and we find the form of the non-covariant Coulomb potential. We identify the coordinate-dependent relativistic inertial potentials and we show that they have the correct Newtonian limit. In the second paper we will study properties of Maxwell equations in non-inertial frames like the wrap-up effect and the Faraday rotation in astrophysics. Also the 3+1 description without coordinate-singularities of the rotating disk and the Sagnac effect will be given, with added comments on pulsar magnetosphere and on a relativistic extension of the Earth-fixed coordinate system.Comment: This paper and the second one are an adaptation of arXiv 0812.3057 for publication on Int.J.Geom. Methods in Modern Phys. 77

    Disentangling density and temperature effects in the viscous slowing down of glassforming liquids

    Full text link
    We present a consistent picture of the respective role of density and temperature in the viscous slowing down of glassforming liquids and polymers. Specifically, based in part upon a new analysis of simulation and experimental data on liquid ortho-terphenyl, we conclude that a zeroth-order description of the approach to the glass transition should be formulated in terms of a temperature-driven super-Arrhenius activated behavior rather than a density-driven congestion or jamming phenomenon. The density plays a role at a quantitative level, but its effect on the viscosity and the structural relaxation time can be simply described via a single parameter, an effective interaction energy that is characteristic of the high temperature liquid regime; as a result, density does not affect the ``fragility'' of the glassforming system.Comment: RevTeX4, 8 pages, 8 eps figure

    Spin glass freezing in Kondo lattice compounds

    Get PDF
    It is presented a theory that describes a spin glass phase at finite temperatures in Kondo lattice systems with an additional RKKY interaction represented by long range, random couplings among localized spins like in the Sherrington- Kirkpatrick (SK) spin glass model. The problem is studied within the functional integral formalism where the spin operators are represented by bilinear combinations of fermionic (anticommuting) Grassmann variables. The Kondo and spin glass transitions are both described with the mean field like static ansatz that reproduces good results in the two well known limits. At high temperatures and low values of the Kondo coupling there is a paramagnetic (disordered) phase with vanishing Kondo and spin glass order parameters. By lowering the temperature a second order transition line is found at Tsg to a spin glass phase. For larger values of the Kondo coupling there is a second order transition line at roughly Tk to a Kondo ordered state. For T<Tsg the transition between the Kondo and spin glass phases becomes first order.Comment: 21 pages, 1 figure, to appear on Phys. Rev.

    Role of the transverse field in inverse freezing in the fermionic Ising spin-glass model

    Full text link
    We investigate the inverse freezing in the fermionic Ising spin-glass (FISG) model in a transverse field Γ\Gamma. The grand canonical potential is calculated in the static approximation, replica symmetry and one-step replica symmetry breaking Parisi scheme. It is argued that the average occupation per site nn is strongly affected by Γ\Gamma. As consequence, the boundary phase is modified and, therefore, the reentrance associated with the inverse freezing is modified too.Comment: 6 pages, 3 figures, accepted for publication in PR

    Efficient and Accurate Modeling of Conformational Transitions in Proteins: The Case of c-Src Kinase

    Get PDF
    The theoretical computational modeling of large conformational transitions occurring in biomolecules still represents a challenge. Here, we present an accurate "in silico" description of the activation and deactivation mechanisms of human c-Src kinases, a fundamental process regulating several crucial cell functions. Our results clearly show that by applying an efficient and automated algorithm able to drive the molecular dynamics (MD) sampling along the pathway between the two c-Src conformational states - the active state and the inactive state - it is possible to accurately describe, at reduced computational costs, the molecular mechanism underlying these large conformational rearrangements. This procedure, combining the MD simulations with the sampling along the well-defined principal motions connecting the two conformational states, allows to provide a description well beyond the present computational limits, and it is easily applicable to different systems where the structures of both the initial and final states are known
    • …
    corecore