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Spin-glass freezing in Kondo-lattice compounds
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A theory is presented that describes a spin-glass phase at finite temperatures in Kondo-lattice systems with
an additional Ruderman–Kittel–Kasuya–Yosida interaction represented by long range, random couplings
among localized spins as in the Sherrington–Kirkpatrick~SK! spin-glass model. The problem is studied within
the functional integral formalism where the spin operators are represented by bilinear combinations of fermi-
onic ~anticommuting! Grassmann variables. The Kondo and spin-glass transitions are both described with the
mean-field–like static ansatz that reproduces good results in the two well-known limits. At high temperatures
and low values of the Kondo coupling there is a paramagnetic~disordered! phase with vanishing Kondo and
spin-glass order parameters. By lowering the temperature, a second order transition line is found atTSG to a
spin-glass phase. For larger values of the Kondo coupling there is a second order transition line at roughlyTk

to a Kondo ordered state. ForT,TSG the transition between the Kondo and spin-glass phases becomes first
order.

DOI: 10.1103/PhysRevB.63.054409 PACS number~s!: 75.10.Nr, 05.50.1q, 64.60.Cn
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I. INTRODUCTION

The antiferromagnetic s–f exchange coupling of cond
tion electrons to localized spins in heavy fermion rare-ea
systems is responsible for two competing effects: the scre
ing of the localized moments due to the Kondo effect and
Ruderman–Kittel–Kasuya–Yosida ~RKKY ! interaction
among magnetic impurities which may induce a long-ran
magnetic ~antiferromagnetic or ferromagnetic! ordering or
eventually a spin-glass magnetic ordering. The Donia
diagram1 gives a good description of this competition: th
Neel temperatureTN is firstly increasing with increasing th
absolute value of the exchange interaction constantJk , then
it is passing through a maximum and finally it tends to ze
at the ‘‘quantum critical point’’~QCP!. Such a decrease o
TN down to the QCP has been observed in many cer
compounds, such as CeAl2, CeAg, or CeRh2Si2, under pres-
sure. Above the QCP, there exists a very strong heavy
mion character, but several possible behaviors, i.e., the c
sical Fermi liquid one with eventually a reduced Kon
temperature2,3 or different non-Fermi-liquid~NFL! ones,
have been observed in cerium or ytterbium compounds.4,5

But, in the case of disordered cerium alloys, the disor
can yield a spin-glass~SG! phase in addition to the NFL
behavior at low temperatures around the QCP. The magn
phase diagram of CeNi12xCux has been extensivel
studied.6,7 CeCu is antiferromagnetic below 3.5 K and Ce
is a nonmagnetic compound with an intermediate valen
The low temperature antiferromagnetic phase chan
aroundx50.8, to a ferromagnetic one which finally disa
pears aroundx50.2. At higher temperatures, a spin-gla
state is deduced from all measured bulk properties, such
for example, the ac susceptibility; for example, forx50.6,
0163-1829/2001/63~5!/054409~7!/$15.00 63 0544
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the SG state exists between 2 K and the Curie temperatur
Tc51.1 K. At x50.2, there exists below 6 K only a SG state
which transforms to the intermediate valence CeNi, af
passing probably through a Kondo lattice system. Thus
the CeNi12xCux system, there appears a SG phase at fin
temperatures above the ferromagnetic order and finally a
Kondo transition occurs for smallx values.

Another disordered cerium system, name
CeCoGe32xSix alloys, has been also studied for differentx
values, by different experimental techniques including mu
spin relaxation.8,9 The compound CeCoGe3 is antiferromag-
netic below 21 K and CeCoSi3 is an intermediate valenc
compound; the QCP of these alloys lies aroundx51.5. The
muon spin relaxation experiments in the quantum criti
region (x51.1 to 1.5) show that a fraction of Ce ions exp
rience random f–f indirect exchange interactions, wh
causes frustration of some Ce spins in the system. So, fx
51.1 andx51.2, frustrated moments of cerium freeze lik
in a spin-glass while the other Ce moments form a dis
dered antiferromagnetic state. Thus, near the QCP, a s
glass state can exist in these alloys, in addition to the
served NFL behavior. So, a striking novel behavior, i.e.,
appearance of a spin-glass state at finite temperature
some disordered cerium alloys, has been observed and a
Kondo transition is developing with increasingx around the
QCP.

The aim of our paper is to present a theoretical model t
describes the spin-glass-Kondo phase transitions, and tha
do by studying a system Hamiltonian that couples the loc
ized spins of a Kondo lattice with an additional long ran
random interaction, like in the Sherrington–Kirkpatrick spi
glass model.10 A similar Hamiltonian has been considered
Ref. 11 to describe NFL behavior and a QCP in some he
©2001 The American Physical Society09-1
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fermions compounds, although the relevant approximati
differ in this work and ours. The authors in Ref. 11 are p
marily interested in the description of the QCP atT50, then
they solve first for the Kondo effect by decoupling the co
duction electrons bath into independent conduction elec
‘‘reservoirs,’’ with no communication between the reservo
at different sites.

During the course of our work, another paper using
same Hamiltonian has been proposed.12 The representation
of Popov and Fedotov eliminates the unwanted spin st
but the approximations involved are in fact different fro
those used in our work. They study essentially the spin-g
state and they finally obtain a second order SG transi
with a transition temperature depressed by the Kondo eff
in second order perturbation theory.

In the present paper we take a different approach:
localized spins of the Kondo lattice will be effectively im
mersed in a common bath of conduction electrons and
Kondo effect will be studied in a quantum static approxim
tion that is basically equivalent to the mean field decoupl
scheme.3,13 The spin operators are represented by bilin
combinations of fermionic creation and destruction ope
tors, for the localized f electrons, and the spin-glass tra
tion will be studied within the static approximation. Th
deserves some special discussion. In the Ising quantum s
glass~QSG! model,14 the spin operatorSi

z commutes with the
particle number operatornis and the static ansatz gives th
exact answer, as the problem is essentially classic. When
add to the fermionic Ising QSG a s–d exchange coupling
the localized spins to the conduction band electrons the p
lem ceases to be exactly soluble and the static ansatz is
an approximation that we consider justified to describe
transition at finite temperature. It has been shown in Ref.
that the exact numerical solution of Bray and Moore
equations16 gives for the spin–spin correlation functionQ(t)
roughly its constant classical value at finite temperatu
which justifies the use of the static ansatz of Ref. 16 at
very low temperatures in the Heisenberg spin-glass.

We consider then the static ansatz which correspond
an approximation similar to mean field theory, whereby n
glecting time fluctuations we can provide a description of
phase transitions occurring at finite temperature.

We use functional integral techniques where the spin
erators are represented by bilinear combinations of fermio
~anticommuting! Grassmann fields. As we show in the ne
section, this method is ideally suited to describe a Kon
lattice transition, and it has been recently applied by two
us to the study of fermionic Ising spin-glasses with loc
BCS pairing.17 Recent work18 also showed the existence o
several characteristic temperatures in the Ising fermio
model, with the de Almeida–Thouless instability19 occurring
at a temperature lower than the spin-glass transition temp
ture.

This paper is organized as follows: in Sec. 2 we descr
the model and relevant results, we reserve Sec. 3 for dis
sions and conclusion, while the detailed mathematical ca
lations are left for the Appendix.
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II. THE MODEL AND RESULTS

We consider a Kondo lattice system with localized sp
SW i at sitesi 51 . . .N, coupled to the electrons of the condu
tion band via a s–d exchange interaction. It is necessar
introduce explicitly the resultant RKKY interaction b
means of a random, long range coupling among locali
spins like in the Sherrington–Kirkpatrick~SK! model for a
spin-glass. To describe the Kondo effect in a mean-field-l
theory it is sufficient to keep only the spin-flip terms3 in the
exchange Hamiltonian, while the spin-glass interaction
represented by the quantum Ising Hamiltonian where o
the z components of the localized spins interact.11,14,17

The Hamiltonian of the model is

H2mcNc2m fNf5Hk2mcNc2m fNf1HSG, ~1!

Hk2mcNc2m fNf5(
k,s

eknks1e0(
i ,s

nis
f

1Jk(
i

@Sf i
1sci

21Sf i
2sci

1#, ~2!

HSG52(
i , j

Ji j Sf i
z Sf j

z 22h0(
i

Sf i
z , ~3!

whereJk.0,

Sf i
15 f i↑

† f i↓ ; sci
15di↑

† di↓ ,

Sf i
25 f i↓

† f i↑ ; sci
25di↓

† di↑ ,

Sf i
z 5

1

2
@ f i↑

† f i↑2 f i↓
† f i↓#, ~4!

and f is
1 , f is(dis

1 ,dis) are creation and destruction operato
for electrons with spin projections5↑ or ↓ in the localized
~conduction! band, that satisfy the standard fermion antico
mutation rules. We also havenks5dks

1 dks where

dks5
1

AN
(

i
eikW•RW idis ,

dks
1 5

1

AN
(

i
e2 ikW•RW idis

1 . ~5!

The energiese0(ek) are referred to the chemical potentia
m f(mc), respectively.

The couplingJi j in Eq. ~3! is an independent random
variable with the gaussian distribution

P~Ji j !5e2Ji j
2

~N/32J2!A N

32pJ2
. ~6!

Functional integration techniques have proved to be
suitable approach to describe phase transitions in disord
quantum mechanical many-particle systems.20 The static ap-
proximation within this formulation consists in neglectin
time fluctuations of the order parameter, and when it is co
bined with the neglect of space fluctuations it leads to
usual Hartree–Fock, mean field like approximation. Wh
dealing with the Hamiltonian in Eqs.~1!–~3!, we notice that
in the limiting caseJk50 we obtain a pure quantum Isin
9-2
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SPIN-GLASS FREEZING IN KONDO-LATTICE COMPOUNDS PHYSICAL REVIEW B63 054409
spin-glass where the static approximation gives the ex
result,14,18while for J50 we recover the mean field approx
mation that has been used successfully to describe the Ko
lattice.3,13 Then we consider that the use of the static a
proximation has an interpolation character and will prov
reliable results to describe critical behavior at fin
temperature15 in systems that do not present a quantum cr
cal point.

In the Lagrangian formulation17,20the partition function is
expressed as

Z5E D~w†w!D~c†c!eA, ~7!

where the actionA is given by

A5(
i ,s

E
0

b

dtH S ]

]t
w is

† Dw is1S ]

]t
c is

† Dc isJ 2E
0

b

H~t!dt.

~8!

In both expressionsw is(t) and c is(t) are anticommut-
ing, complex Grassmann variables associated to the con
tion and localized electrons fields, respectively, whilet is an
imaginary time andb the inverse absolute temperature.

We show in the Appendix that in the static, mean fie
like approximation the action A may be written

A5A01AK1ASG, ~9!

with

A05(
vs

(
i , j

@~ iv2be0!d i j c is
† ~v!c is~v!

1~ ivd i j 2bt i j !w is
† ~v!w j s~v!#, ~10!

where from Eq.~A2!

AK5
bJk

N (
s

F(
iv

c i ,s
† ~v!w is~v!GF(

i ,v
w i 2s

† c i 2s~v!G ,
~11!

ASG5(
i , j

Ji j Si
zSj

z22h0(
i

Sf i
z , ~12!

and in the static approximation14,17,18

Si
z5

1

2 (
s

(
v

c is
† ~v!c is~v!. ~13!

The sums are over fermion Matsubara frequenciesv5(2n
11)p.

The Kondo order is described by the complex order
rameter

ls
†5

1

N (
i ,v

^c is
† ~v!w is~v!&,

ls5
1

N (
i ,v

^w is
† ~v!c is~v!&, ~14!
05440
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that in a mean field theory3,13 describes the correlationsls
†

5^ f is
† dis& and ls5^dis

† f is&. Complex conjugation of
Grassmann variables is defined through the transpos
rule20 (c†w)†5w†c.

We show in the Appendix that standard manipulatio
give for the averaged free energy within a replica symme
theory:

bF52bJkl
21

1

2
b2J2~ x̄212qx̄ !2bV, ~15!

where

bV5 lim
n→0

1

Nn H E
2`

1`

)
j

N

Dzj)
a

n E
2`

1`

)
j

D«a j

3expS (
v,s

lnuGi j s
21~v!u D 21J , ~16!

and the order parametersq, x̄, andl must be taken at thei
saddle point value. Hereq is the SG order parameter14,17,18

and x5bx̄ is the static uniform spin susceptibility of th
localized f electrons. We use the notationDx

5(dx/A2p)e2(1/2)x2
.

The functionGi j sa(v) in Eq. ~16! is the time Fourier
transform of the Green’s function Gi j s(t)
5 i ^T fis(t) f j s

† (0)& for the localized electrons in the pres
ence of random fieldszj and«a j at every site, and from Eq
~A23! satisfies the equation

Gi j sa
21 ~v!5@ iv2be02shj a#d i j 2b2Jk

2l2g i j ~v!,
~17!

where

hj a5A2qbJzj1A2x̄bJ«a j1h0 , ~18!

while g i j (v) is the time Fourier transform of the conductio
electron Green’s functiong i j (t)5 i ^Tdis(t)dis

† (0)& and is
given by

g i j
215@ iv2bmc#d i j 2bt i j . ~19!

We obtained in Eq.~17! the Green’s function for the f
electrons in a Kondo lattice,13 but now in the presence of
random fieldhj at every site that prevents us from procee
ing with the calculation. In the pure SG limitJk50 the
Green’s function in Eq.~17! is local and the integrals in Eq
~16! reduce to a one site problem, while in the Kondo lim
J50 the random fields vanish and the integrals separat
reciprocal space. We adopt here a decoupling approxima
that is reminiscent of the model with independent ‘‘res
voirs’’ of electrons considered in Ref. 11. We replace t
Green’s function Gi j sa(v,$h1a . . . hj a . . . hNa%) by the
Green’s functionsGmns(v,hj a), j 51 . . .N, of N indepen-
dent Kondo lattices, each one with a ‘‘uniform’’ fieldhj a at
every sitem,n, by means of the approximation
9-3
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lnuGi j sa
21 ~v,$h1 . . . hN%!u'

1

N (
j

lnuGmns
21 ~v,hj a!u,

~20!

whereGmns(v,hj a) is the f electron Green’s function for
fictitious Kondo lattice that has a uniform fieldhj a at every
site m,n and satisfies the equation

Gmns
21 ~v,hj !5@ iv2be02shj a#dmn2b2Jk

2l2gmn ,
~21!

where, from Eq.~19!,

gmn~v!5
1

N (
k

1

iv2bek
eikW•RW mn. ~22!

Now Eq. ~21! may be easily solved by a Fourier transform
tion with the result

lnuGmns
21 ~v,hj a!u5(

kW
ln@GkWs

21
~v,hj a!#, ~23!

where

GkWs
21

~v,hj a!5@ iv2be02shj a#2b2Jk
2l2

1

iv2bek
.

~24!

We may now introduce Eqs.~20! and~23! in Eq. ~16!, the
integrals over the fields separate and we obtain

bV5E
2`

1`

Dz lnH E
2`

1`

D« expS (
s

1

N (
kW

Ss~kW ,h!D J ,

~25!

with

Ss~kW ,h!5(
v

ln@GkW ,s
21

~v,h!# ~26!

and h is given in Eq.~18!, with z and « in place ofzj and
« j a .

The sum over the fermion frequencies is performed in
standard way by integrating in the complex plane,20 with the
result

Ss~kW ,h!5 ln@~11e2vs1!~11e2vs2!#, ~27!

where

vs65 1
2 @bek1sh#6$ 1

4 ~bek2sh!21~bJkl!2%1/2.
~28!

We considere050 that corresponds to an average occu
tion ^nf&51, per site.

Replacing sums by integrals, in the approximation o
constant density of states for the conduction band electr
r(e)5r51/(2D) for 2D,e,D, we obtain from Eqs.~25!
to ~27! the final expression for the free energy in Eq.~15!
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bF52bJkl
21

1

2
b2J2~ x̄212qx̄ !

2E
2`

1`

Dz lnH E
2`

1`

D«eE(h)J , ~29!

with

E~h!5
1

bDE
2bD

1bD

dx lnH cosh
~x1h!

2
1cosh~AD!J ,

~30!

D5
1

4
~x2h!21~bJkl!2, ~31!

and from Eq. ~18! we have h5bJ@A2qz1A2x̄«#. The
saddle point equations for the SG order parameters are

q5E
2`

1`

DzH E D«eE~]E/]h!

E D«eE
J 2

, ~32!

x̄5E
2`

1`

Dz
1

E D«eE
H E D«

]

]h FeE
]E

]hG J , ~33!

while we obtain for the Kondo order parameterl

4bJklH 12
bJk

4 E
2`

1`

Dz
1

E D«eE
E D«eE

1

bD

3E
2bD

1bD

dx
1

coshS x1h

2 D1cosh~AD!
S sinh~AD!

AD
D J

50. ~34!

The numerical solution of the saddle point equatio
whenh050 as a function ofT/J andJk /J provides us with
the phase diagram in Fig. 1, that we discuss in the n
section.

III. CONCLUSIONS

We study in this paper the phase transitions in a sys
represented by a Hamiltonian that couples the localized s
of a Kondo lattice3,13with random, long range interactions
like in the SK model for a spin-glass.10

Using functional integrals techniques and a static, rep
symmetric ansatz for the Kondo and spin-glass order par
eters, we derive a mean field expression for the free ene
and the saddle point equations for the order parameters.
Kondo and spin-glass transitions are both described with
mean field like static ansatz that reproduces good result
two well-known limits: whenJk50 we recover the exac
solution for the quantum Ising spin-glass,14,18 while for J
50 we recover the mean field results for the Kon
9-4
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lattice.3,13 The use of the static ansatz is justified at fin
temperatures.15 Numerical solution of the saddle-point equ
tions allow us to draw the magnetic phase diagram in theJk
vs T plane, for fixed value ofJ, presented in Fig. 1.

Figure 1 shows three different phases. At high tempe
tures, the ‘‘normal’’ phase is paramagnetic with vanishi
Kondo and spin-glass order parameters, i.e.,l5q50. When
temperature is lowered, for not too large values of the ra
JK /J, a second-order transition line is found atT5TSG to a
spin-glass phase withq.0 andl50. Finally, for large val-
ues of the ratioJK /J, we recover the ‘‘Kondo’’ phase with a
nonzerol value andq50: the transition line from the para
magnetic phase to the Kondo phase for temperatures la
thanTSG is a second-order one and occurs at a tempera
very close to the one-impurity Kondo temperatureTK . On
the other hand, the transition line from the spin-glass ph
to the Kondo phase, for temperatures smaller thanTSG, is a
first-order one and it ends atJK

c at T50. When the tempera
ture is lowered, the transition temperature does not vary v
much with the value ofJK /J; the separation between th
spin-glass and the Kondo phases departs completely from
behavior ofTK and looks like the separation between t
magnetic and Kondo phases when these two phases
considered.21 We can also remark that we get here on
‘‘pure’’ Kondo or SG phases and never a mixed SG-Kon
phase with the two order parameters different from zero;
result is probably connected to the approximations used
to treat the starting Hamiltonian.

The diagram shown in Fig. 1 can explain the magne
phase diagram observed above the Curie temperature fo
CeNi12xCux ~Ref. 6! for smallx values when there is a tran
sition from a spin-glass state to a Kondo state and then to
intermediate valence compound CeNi; however, there is
experimental information on the precise nature of the S
Kondo transition and our model cannot be checked from
point of view. There is also probably a SG-Kondo transiti
in the CeCoGe32xSix alloys, but there the experimental situ
ation is even more complicated than in the preceding c
An unsolved basic question concerns also the existenc
not of a ‘‘mixed’’ SG-Kondo phase in cerium disordere
alloys and this problem is worthy of being studied expe

FIG. 1. Phase diagram in theT2Jk plane as a function ofT/J
andJk /J for fixed J50.05D, whereD is the conduction bandwidth
The dotted line represents the ‘‘pure’’ Kondo temperatureTk .
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mentally in more detail. Thus, further experimental work
necessary, but our model yields a new striking point in
behavior of heavy fermion disordered alloys in the vicin
of the quantum critical point.
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APPENDIX

We present here a detailed derivation of the main eq
tions of the paper. By introducing Eqs.~1!–~3! in Eq. ~8! we
obtain for the s–d exchange part of the action:

AK52bJk(
i

(
v,v8,V

(
s

c is
† ~v!c i 2s~v81V!

3w i 2s
† ~v8!w is~v2V!, ~A1!

wherev5(2n11)p andV52np. In the mean field spirit
we want to introduce the spatially uniform and static Kon
order parameter in Eq.~14!, then we takeV50, reorder the
operators and separate the sites in Eq.~A1! with the intro-
duction of anN21 factor, which gives

AK'1
bJk

N (
s

(
i ,v

c is
† ~v!w is~v!(

j ,v8
w j 2s

† ~v8!c j 2s~v8!,

~A2!

that is Eq.~11!.
We find it convenient to introduce the Kondo order p

rameters in Eq.~14! by means of the identity

eAk5E
2`

`

Psdls
†dlsPs

3dFls
†N2(

j ,v
c j s

† ~v!w j s~v!G
3dFlsN2(

j ,v
w j s

† ~v!c j s~v!G
3ebJkN[l↑

†l↓1l↓
†l↑] , ~A3!

and using the integral representation of thed function

d~x2x0!5
1

2pE2`

`

du eiu(x2x0), ~A4!

we may write the partition function by combining Eqs.~7! to
~13!,

Z5E
2`

`

Psdls
†dlsE

2`

`

Ps

dusdvs

~2p!2

3eN(s$bJkls
†l2s2 i [usls

†
1vsls] %Zeff , ~A5!
9-5
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where

Zeff5E D~c†c!E D~w†w!eA01ASG

3e(s i [vs( j ,vw j s
† (v)c j s(v)1us( j ,vc j s

† (v)w j s(v)] .

~A6!

The saddle point values ofls , ls
† , us , us

† are obtained by
extremizing the exponent in Eq.~A5!

bJkl2s
† 5 ivs ,

bJkl2s5 ius ,

ls
†5

1

N (
j ,v

^c j s
† ~v!w is~v!&,

ls5
1

N (
j ,v

^w is
† ~v!c j s~v!&, ~A7!

where ^•••&5*D(c†c)D(w†w)eAeff(•••) from Eq. ~A6!.
Introducing the saddle point values of Eq.~A7! into Eq.
~A5!, we obtain

Z5e22NbJkl†lZeff . ~A8!

From Eq.~10!, Zeff is now the integral of a quadratic form
in the w†,w variables, that can be integrated out to give

Zeff5Zd
0ZSG, ~A9!

where Zd
0 is the partition function of the free conductin

electrons,

ln~Zd
0!52(

v
logug i j

21~v!u, ~A10!

and

g i j
21~v!5 ivd i j 2bt i j , ~A11!

is the inverse Green’s function for the d electrons. The qu
tity ZSG in Eq. ~A9! is the partition function for the localized
f electrons,

ZSG5E D~c†c!e(vs( i , j gi j
21(v)c is

† (v)c j s(v)1ASG,

~A12!

where the inverse Green’s function for the localized, non
teracting f electrons is now modified by the Kondo intera
tion,

gi j
21~v!5~ iv2b«0!d i j 2b2Jk

2l†lg i j ~v! ~A13!

andASG is given in Eq.~12!.
The interesting part of the free energy is given by

bF52
1

N K K lnS Z

Zd
0D L L ~A14!
05440
n-

-
-

where the double bracket indicates a configurational aver
over the random variablesJi j , with the distribution probabil-
ity in Eq. ~16!. Using the replica method we obtain from Eq
~A8! and ~A9!

bF52bJkl
†l2 lim

n→0

1

Nn
@Zn~SG!21#, ~A15!

wherea51 . . .n is the replica index and

Zn~SG!5^^ZSG
n &&5E )

a

n

D~ca
†ca!

3expH(
vs

(
i , j

gi j
21~v!(

a
c isa

† ~v!c j sa~v!J
3)

i , j
^^ebJi j (aSia

z Sj a
z && . ~A16!

The operatorsSia
z are bilinear combinations ofc isa

† (v),
c isa(v) from Eq. ~13!, then after performing the average
Eq. ~A16! we must use standard manipulations with gauss
identities16,17 to linearize the exponent in Eq.~A16!. We ob-
tain

Zn~SG!5E )
a,b

dqabe2 ~1/2!(bJ)2N(a,bqab
2

L~$qab%!,

~A17!

where

L~$qab%!5E D~ca
†ca!

3expH(
i , j

(
v,s,a

gi j
21~v!c isa

† ~v!c j sa~v!

1b2J2(
a,b

qab(
i

Sia
z Sib

z J . ~A18!

We obtain forZn(SG) at the replica symmetric sadd
point

qaÞb5q5 lim
n→0

1

n~n21! (
aÞb

^Sa
z Sb

z & , ~A19!

qaa5q1x̄5 lim
n→0

1

n (
a

^Sa
z Sa

z & , ~A20!

Zn~SG!'e2 ~1/2!(bJ)2N(x̄212qx̄)L~q,x̄ !, ~A21!

where

L~q,x̄ !5E
2`

`

)
j

Dzj)
a

E
2`

`

)
j

Dja j I a~q,x̄,$zj%,$ja j%!

~A22!

and
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I a~q,x̄,$zj%,$ja j%!

5E D~ca
†ca!expH(

v,s
(
i , j

Gi j sa
21 ~v!c isa

† ~v!c j sa~v!J
5e(v,s lnuGi j sa

21 (v)u, ~A23!

where, makingh050

Gi j sa
21 ~v!5gi j

21~v!2d i j s@A2qbJzj1A2x̄bJja j #.

~A24!

Introducing Eqs.~A23! and~A22! into Eq. ~A21!, we ob-
tain from Eq.~A15! the expression for the free energy in E
~15! of the main text.
k,
tt

.J

Le

s

,

o

a,

05440
The order parameterx̄ in Eq. ~A20! is related to the uni-
form static susceptibilityx of the localized f electrons

x5
1

N2b

]2^ ln Z&

]ho
2 U

ho50

5bx̄, ~A25!

as it was discussed in our previous publications.14,18 In the
Sherrington–Kirkpatrick model10 we have the identityqaa

SK

51 and Eq.~A20! reduces to the known expressionxSK
5b(12q), while in the present model the occupation num
ber fluctuates andx̄ must be determined self-consistently.
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