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Spin-glass freezing in Kondo-lattice compounds
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A theory is presented that describes a spin-glass phase at finite temperatures in Kondo-lattice systems with
an additional Ruderman—Kittel-Kasuya—Yosida interaction represented by long range, random couplings
among localized spins as in the Sherrington—Kirkpat(®K) spin-glass model. The problem is studied within
the functional integral formalism where the spin operators are represented by bilinear combinations of fermi-
onic (anticommuting Grassmann variables. The Kondo and spin-glass transitions are both described with the
mean-field—like static ansatz that reproduces good results in the two well-known limits. At high temperatures
and low values of the Kondo coupling there is a paramagridisorderedl phase with vanishing Kondo and
spin-glass order parameters. By lowering the temperature, a second order transition line is foggtbaa
spin-glass phase. For larger values of the Kondo coupling there is a second order transition line atTipughly
to a Kondo ordered state. FOK T4 the transition between the Kondo and spin-glass phases becomes first
order.

DOI: 10.1103/PhysRevB.63.054409 PACS nuni®er75.10.Nr, 05.50+q, 64.60.Cn

[. INTRODUCTION the SG state exists betwe® K and the Curie temperature
T.=1.1 K. Atx=0.2, there exists belo6 K only a SG state

The antiferromagnetic s—f exchange coupling of conducwhich transforms to the intermediate valence CeNi, after
tion electrons to localized spins in heavy fermion rare-eartlpassing probably through a Kondo lattice system. Thus, in
systems is responsible for two competing effects: the screenhe CeNj_,Cu, system, there appears a SG phase at finite
ing of the localized moments due to the Kondo effect and theemperatures above the ferromagnetic order and finally a SG-
Ruderman—Kittel-Kasuya—Yosida (RKKY) interaction Kondo transition occurs for smafl values.
among magnetic impurities which may induce a long-range Another  disordered  cerium  system,  namely,
magnetic (antiferromagnetic or ferromagnetiordering or CeCoGeg_,Si, alloys, has been also studied for different
eventually a spin-glass magnetic ordering. The Doniaclvalues, by different experimental techniques including muon
diagrant gives a good description of this competition: the spin relaxatior?:® The compound CeCoGes antiferromag-
Neel temperaturd is firstly increasing with increasing the netic below 21 K and CeCogis an intermediate valence
absolute value of the exchange interaction consiagnthen  compound; the QCP of these alloys lies aroxdl1.5. The
it is passing through a maximum and finally it tends to zeromuon spin relaxation experiments in the quantum critical
at the “quantum critical point”(QCP. Such a decrease of region x=1.1 to 1.5) show that a fraction of Ce ions expe-
Ty down to the QCP has been observed in many ceriunience random f—f indirect exchange interactions, which
compounds, such as CeAlCeAg, or CeRESi,, under pres-  causes frustration of some Ce spins in the system. So for
sure. Above the QCP, there exists a very strong heavy fer=1.1 andx=1.2, frustrated moments of cerium freeze like
mion character, but several possible behaviors, i.e., the clagn a spin-glass while the other Ce moments form a disor-
sical Fermi liquid one with eventually a reduced Kondodered antiferromagnetic state. Thus, near the QCP, a spin-
temperaturé® or different non-Fermi-liquid(NFL) ones, glass state can exist in these alloys, in addition to the ob-
have been observed in cerium or ytterbium compodrids.  served NFL behavior. So, a striking novel behavior, i.e., the

But, in the case of disordered cerium alloys, the disordemppearance of a spin-glass state at finite temperatures in
can yield a spin-glas¢SG) phase in addition to the NFL some disordered cerium alloys, has been observed and a SG-
behavior at low temperatures around the QCP. The magnetikondo transition is developing with increasingaround the
phase diagram of CeNi,Cu, has been extensively QCP.
studied®’ CeCu is antiferromagnetic below 3.5 K and CeNi  The aim of our paper is to present a theoretical model that
is a nonmagnetic compound with an intermediate valencedescribes the spin-glass-Kondo phase transitions, and that we
The low temperature antiferromagnetic phase changeslo by studying a system Hamiltonian that couples the local-
aroundx=0.8, to a ferromagnetic one which finally disap- ized spins of a Kondo lattice with an additional long range
pears arounk=0.2. At higher temperatures, a spin-glassrandom interaction, like in the Sherrington—Kirkpatrick spin-
state is deduced from all measured bulk properties, such aglass modet® A similar Hamiltonian has been considered in
for example, the ac susceptibility; for example, for 0.6,  Ref. 11 to describe NFL behavior and a QCP in some heavy
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fermions compounds, although the relevant approximations Il. THE MODEL AND RESULTS

differ in this work and ours. The authors in Ref. 11 are pri-  \ye consider a Kondo lattice system with localized spins
marily mtergsted in the description of the QCPT#O’ then S atsites=1 .. .N, coupled to the electrons of the conduc-
they solve first for the Kondo effect by decoupling the con-(jon hand via a s—d exchange interaction. It is necessary to
duction electrons bath into independent conduction electrofhtroduce explicitly the resultant RKKY interaction by
“reservoirs,” with no communication between the reservoirsmeans of a random, long range coupling among localized
at different sites. spins like in the Sherrington—KirkpatrickSK) model for a

During the course of our work, another paper using thespin-glass. To describe the Kondo effect in a mean-field-like
same Hamiltonian has been proposedhe representation theory it is sufficient to keep only the spin-flip terfria the
of Popov and Fedotov eliminates the unwanted spin state@xchange Hamiltonian, while the spin-glass interaction is
but the approximations involved are in fact different from 'éPresented by the guantum Ising Hamiltonian where only
those used in our work. They study essentially the spin-glasd1® Z components of the localized spins interdlct™
state and they finally obtain a second order SG transition The Hamiltonian of the model is
with a transition temperature depressed by the Kondo effect, H—weNe— wiNg=Hy— N — uiNi + Hsg, (1)
in second order perturbation theory.

In the present paper we take a different approach: the
localized spins of the Kondo lattice will be effectively im-
mersed in a common bath of conduction electrons and the
Kondo effect will be stud_ied in a quantum sta}tic approxima— +sz [Siso+Shsal, 2)
tion that is basically equivalent to the mean field decoupling [
schemé”!® The spin operators are represented by bilinear
combinations of fermionic creation and dest.ruction opera- Hse:—z Jijs?is?j—Zhoz S ©)
tors, for the localized f electrons, and the spin-glass transi- L i
tion will be studied within the static approximation. This whereJ, >0,
deserves some special discussion. In the Ising quantum spin- t ete ot
glass(QSG model}* the spin operato®’ commutes with the Sri=fitfiis se=didi|,
particle number operatar;s and the static ansatz gives the Sf—_:fj‘ £ s-=dhd
exact answer, as the problem is essentially classic. When we PO Se E AT
add to the fermionic Ising QSG a s—d exchange coupling of . L1 +
the localized spins to the conduction band electrons the prob- =5 LT =T fi 4)

lem ceases to be exactly soluble and the static ansatz is just . N ) )
an approximation that we consider justified to describe ?ndfio'fm(dio'diﬂ) are creation and destruction operators

_ f
Hi— mcNe—piNe= kE €Nke T Eoiz Niy
o T

transition at finite temperature. It has been shown in Ref. 1407 €lectrons with spin projection=1 or | in the localized
. . ,_(conduction band, that satisfy the standard fermion anticom-
that the exact numerical solution of Bray and Moore Smutation rules. We also have, =d:" d,. where
equation&’® gives for the spin—spin correlation functiQ¥{ r) ' o~ “ko-ka
roughly its constant classical value at finite temperature, 1 .
which justifies the use of the static ansatz of Ref. 16 at not (Jh(g:\/—N > e Rd,,,
very low temperatures in the Heisenberg spin-glass. '
We consider then the static ansatz which corresponds to

an approximation similar to mean field theory, whereby ne- di,=— 2 e*'k'RiditT_ (5)
glecting time fluctuations we can provide a description of the YN
phase transitions occurring at finite temperature. The energies(¢,) are referred to the chemical potentials

We use functional integral techniques where the spin opz.¢(u.), respectively.
erators are represented by bilinear combinations of fermionic  The couplingJ;; in Eq. (3) is an independent random
(anticommuting Grassmann fields. As we show in the next variable with the gaussian distribution
section, this method is ideally suited to describe a Kondo
lattice transition, and it has been recently applied by two of P(J__):e,Jizj (N/3232) / N
us to the study of fermionic Ising spin-glasses with local 4 32732

BCS pairing*’ Recent work® also showed the existence of

several characteristic temperatures in the Ising fermionic Functional integration techniques have proved to be a
model, with the de Almeida—Thouless instabiftpccurring suitable approach to describe phase transitions in disordered

at a temperature lower than the spin-glass transition tem erq-u antum mechanical many-particle systéfhghe static ap-
ture P pin-g P %roximation within this formulation consists in neglecting

(6)

the model and relevant results, we reserve Sec. 3 for disCU§g,31 Hartree—Fock

sions and conclusion, while the detailed mathematical Ca":UdeaIing with the Hamiltonian in Eq$1)—(3), we notice that
lations are left for the Appendix. in the limiting caseJ,=0 we obtain a pure quantum Ising
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spin-glass where the static approximation gives the exathat in a mean field theoty® describes the correlations],
result**®while for J=0 we recover the mean field approxi- =(f{ d,.) and \,=(d’ f;,). Complex conjugation of
mation that has been used successfully to describe the Kondgrassmann variables is defined through the transposition
lattice>* Then we consider that the use of the static aprule?® (y¢) "= y.

proximation has an interpolation character and will provide \We show in the Appendix that standard manipulations

reliable resqlts to describe critical behavior at fini_tg give for the averaged free energy within a replica symmetric
temperatur® in systems that do not present a quantum criti-theory:

cal point.

In the Lagrangian formulatidv?°the partition function is 1 L
expressed as BF=2BJ N+ E,BZJZ(XZJr 2qx)— BQ, (15)

z= J D(¢'e)D (4" hed, (7)  where
. . . N n
where the actior is given by o1 +oo +oo
BO=Iim m[ B H Dsz _mH De,j
B d d B n—0 “ )
A=2 | dr| el | @it | -t |t —f H(7)dr.
o Jo aT or 0 .
(8) XEXI{E In|Gij(r(w)|)_1]a (16)

In both expressiong;,(7) and ¢;,(7) are anticommut- — )
ing, complex Grassmann variables associated to the condud the order parametens x, and\ must be taken at ';hlglr
tion and localized electrons fields, respectively, whils an ~ Saddle point value. Herg is the SG order parametér”

imaginary time ang3 the inverse absolute temperature. and y= By is the static uniform spin susceptibility of the
We show in the Appendix that in the static, mean fieldlocalized f electrons. We wuse the notatioDx
like approximation the action A may be written =(dx/~/27r)e‘(1’2)><2_

The functionG;;, () in Eqg. (16) is the time Fourier

A=Aot+AxtAsc, ®  transform of the Green's function Gj;,(7)
with =i(Tfi,,(r)f;‘(,(O)> for the localized electrons in the pres-
ence of random fieldg; ande,; at every site, and from Eq.
(A23) satisfies the equation

Aozg Ej [(iw— Beo) 8} (@) i o @)

Gi ool @) =[iw— Beg— 0,18 — BRI yij(w),

ijoa

+ (w8 — Blij) /(@) @} o(®)], (10 17
where from Eq.(A2) where
J —
Aﬁ% 2 (@) || 2 <pﬁowi,,<w>}, o= 232+ \2xBIe i +ho, (18

(1) while y;;(w) is the time Fourier transform of the conduction
electron Green's functioryij(r)=i<TdiU(T)diTU(O)) and is

ASGZE JijS,ZSjZ—ZhOZ S%i, (12) given by
1,) i

and in the static approximatich'’18 vy =lio=Buclo, =Bt 19
1 We obtained in Eq(17) the Green’s function for the f
SﬁZ:E > U (o) iig(w). (13 electrons in a Kondo Iatn_c@, but now in the presence of a
o e random fieldh; at every site that prevents us from proceed-
ing with the calculation. In the pure SG limi,=0 the
Green’s function in Eq(17) is local and the integrals in Eq.
(16) reduce to a one site problem, while in the Kondo limit
J=0 the random fields vanish and the integrals separate in
reciprocal space. We adopt here a decoupling approximation
1 that is reminiscent of the model with independent “reser-
)\lzﬁ Z <l//;ra(a))qpia(a))>, voirs” of electrons considered in Ref. 11. We replace the
e Green’s function Gjj,q(®,{h1,...hj,...hy,}) by the
1 Green’s functiond”,, ,(w,h;,), j=1...N, of N indepen-
_ t dent Kondo lattices, each one with a “uniform” fielg , at
Ao N 2‘.} (eio(@)¥io(@)), (14 every siteu, v, by means of the approximation "

The sums are over fermion Matsubara frequenaies(2n
+1)r.

The Kondo order is described by the complex order pa
rameter
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1 _
|Gy so(@.{hy ...~ 55 2 1T (w00,
(20

wherel’ ,,,(w,h;,) is the f electron Green’s function for a
fictitious Kondo lattice that has a uniform fiely, at every

site u, v and satisfies the equation

/.LVO'

L (0,h)=[i0—Beg—0ch;,18,,— BNy,
(21)

where, from Eq(19),

1 1
Yurl @)= 2

ikK-R,,
4 iw—ﬁeke uv, (22
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1 — —
BF=2BI\*+ Eﬁsz(Xer 29x)

+ 00 + o0
—f Dzln” Dseﬂh)), (29

1 (+8D (x+h)
E(h)zB—Df_ﬁDdxln[cosh 5 +COSWK)],
(30

with

1
A= 32+ (BN, 3D

and from Eq.(18 we haveh=gJ[\2qz+ \2xe]. The

Now Eq.(21) may be easily solved by a Fourier transforma-saddle point equations for the SG order parameters are

tion with the result

In|T 2 (w,hy,)] = E IN[['; *(,h;a)], (23)

where

Ty (@.hjo)=[i0—Beg—ohj,]~ BN Bex’
(24)

We may now introduce Eq$20) and(23) in Eq. (16), the
integrals over the fields separate and we obtain

J+°°D8 exp(; %% sU(E,h))],

,89=f+xDzIn B
(25

with

S,(k,h)= EIn[r J(w,h)] (26)

andh is given in Eq.(18), with zand e in place ofz; and
8ja

2
f Deef(9E/oh)

+ oo
q=J Dz{ *———} | (32)
o steE

eE<9_hH . (33

while we obtain for the Kondo order parameter

1
4BIN 1—&f Dz nge 0
o steE

><J’+BDdx 1 (sinh(\/K))
P cos?{?)ﬂ:osf(\/ﬁ) VA

=0. (34

The numerical solution of the saddle point equations
whenhy=0 as a function ofl/J andJ,/J provides us with
the phase diagram in Fig. 1, that we discuss in the next

The sum over the fermion frequencies is performed in theyection.

standard way by integrating in the complex pl&fwiith the
result

S,(k,h)=In[(1+e ) (1+e s )], (27)

where

w,== 5[ Bet+ ah]= {7 (Bex— ah)?+ (BIN) 2
(28)

IIl. CONCLUSIONS

We study in this paper the phase transitions in a system
represented by a Hamiltonian that couples the localized spins
of a Kondo latticé™with random, long range interactions,
like in the SK model for a spin-glass.

Using functional integrals techniques and a static, replica
symmetric ansatz for the Kondo and spin-glass order param-
eters, we derive a mean field expression for the free energy

We considere;,=0 that corresponds to an average occupaand the saddle point equations for the order parameters. The

tion (n¢)=1, per site.

Kondo and spin-glass transitions are both described with the

Replacing sums by integrals, in the approximation of amean field like static ansatz that reproduces good results in
constant density of states for the conduction band electronswo well-known limits: whenJ,=0 we recover the exact

p(€)=p=1/(2D) for —D<e<D, we obtain from Eqs(25)
to (27) the final expression for the free energy in Efb)

solution for the quantum Ising spin-gla¥s:® while for J
=0 we recover the mean field results for the Kondo
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T T T mentally in more detail. Thus, further experimental work is
necessary, but our model yields a new striking point in the
behavior of heavy fermion disordered alloys in the vicinity
of the quantum critical point.
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° APPENDIX
FIG. 1. Phase diagram in the—J, plane as a function of/J ~ We present here a detailed derivation of the main equa-
andJy /J for fixed J=0.05D, whereD is the conduction bandwidth. tions of the paper. By introducing Eqd)—(3) in Eq. (8) we
The dotted line represents the “pure” Kondo temperafiige obtain for the s—d exchange part of the action:
lattice3® The use of the static ansatz is justified at finite AK:_IBJkZ SO () (0 +Q)

temperature$® Numerical solution of the saddle-point equa-
tions allow us to draw the magnetic phase diagram inJthe + , B
vs T plane, for fixed value o8, presented in Fig. 1. X i g(0")gig(0=0), (AL)
Figure 1 shows three different phases. At high temperagherew=(2n+1)w andQ =2n. In the mean field spirit
tures, the “normal” phase is paramagnetic with vanishingye want to introduce the spatially uniform and static Kondo
Kondo and spin-glass order parameters, he=q=0. When  order parameter in Eq14), then we take) =0, reorder the

temperature is lowered, for not too large values of the ratigyperators and separate the sites in &dl) with the intro-
Jk 13, a second-order transition line is foundTat Tsgto & guction of anN~* factor, which gives

spin-glass phase with>0 and\ =0. Finally, for large val-

ues of the ratidlk /J, we recover the “Kondo” phase with a

nonzero\ value andg=0: the transition line from the para- Ax~* % > ¢rg(w)¢ig(w)2 o0 ) o(@),

magnetic phase to the Kondo phase for temperatures larger 7ohe o (A2)

than T4 is a second-order one and occurs at a temperature

very close to the one-impurity Kondo temperatdig. On  that is Eq.(11).

the other hand, the transition line from the spin-glass phase We find it convenient to introduce the Kondo order pa-

to the Kondo phase, for temperatures smaller thag, isa  rameters in Eq(14) by means of the identity

first-order one and it ends af atT=0. When the tempera-

ture is lowered, the transition temperature does not vary very A= Jm T drTdN TI

much with the value ofl/J; the separation between the L, O

spin-glass and the Kondo phases departs completely from the

behavior of Tx and looks like the separation between the < S

magnetic and Kondo phases when these two phases are

considered! We can also remark that we get here only

“pure” Kondo or SG phases and never a mixed SG-Kondo X8

phase with the two order parameters different from zero; this

result is probably connected to the approximations used here s N

to treat the starting Hamiltonian. X @BININA FA ] (A3)
The diagram shown in Fig. 1 can explain the magnetic . . . .

phase diagram observed above the Curie temperature for tR9'd Using the integral representation of théunction

CeNj, _,Cu, (Ref. 6 for smallx values when there is a tran- 1 [

sition from a spin-glass state to a Kondo state and then to the S(X—Xg)= _f du dux—xo), (A4)

intermediate valence compound CeNi; however, there is no 27 )

experimental information on the precise nature of the SG-

Kondo transition and our model cannot be checked from tha

point of view. There is also probably a SG-Kondo transition

in the CeCoGg_,Siy alloys, but there the experimental situ-

wo' QO

AlN—jEw Ul (©) @) (w)

AUN—jEw ol (@) j,(w)

e may write the partition function by combining Eqg) to
13),

ation is even more complicated than in the preceding case. 7= fx T dxtd\ fx I du,dv,

An unsolved basic question concerns also the existence or e T ) e T (207)2

not of a “mixed” SG-Kondo phase in cerium disordered . -

alloys and this problem is worthy of being studied experi- X @NZoABIAA o= 1lUgh s To NGl 7 (AB)
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where where the double bracket indicates a configurational average

over the random variablek; , with the distribution probabil-
_ + T\ eAo+Ase ity in Eq. (16). Using the replica method we obtain from Egs.
XeE |[U 2] m‘PJ(r(w)wjtr(w)+uo'EJ ml/’ja-(w)‘PJu'(‘”)] F 2 J )\T)\ I 1 [Z (SG) 1] (Als)
= —lim — -1],
(AG) B B k h0 Nn n

The saddle point values of,, A/, u,, uj are obtained by \herea=1...n is the replica index and
extremizing the exponent in EGAS)

,BJk)\t(,Ziv(,, Zn(SG):<<ZgG>>:j ].;.[ D(lﬂ:i‘/’a)

BI - o
1 xexp{wza DETREMRTRYIN
=N 2 (Ul @)ein(),
' ><H ((ephzasusla) ). (A16)

1
=5 2 (elo(@)d4(@), (A7)
N 7% (o Vi ) The operatorss?, are bilinear combinations af! (),

where (- Y= (D(4 D (0T o)ePef( - - .) from Ed. (A6). i -o(w) from Eq.(13), then after perfprmln'g the average i_n
Introdu<cing> th{a s(z;iigﬁa égin(tp)valu(es gf EA7) i?]té El)l Eqg. (A16) we must use standard manipulations with gaussian

(A5), we obtain identitied®! to linearize the exponent in E¢A16). We ob-
’ tain
Z=e MBINNZ (A8) 2
Z.(SC) = d ~ (L2(BI)NZ 4 Ao A 7
From Eq.(10), Z is now the integral of a quadratic form (SO J H; Gap® PA({Gaph)
in the ¢, ¢ variables, that can be integrated out to give (A17)
Zei=Z4Zsc, (A9)  Where
where Z§ is the partition function of the free conducting t
electrons, A({dagh) = | D(&atba)
In(z§)=22 log|y;; *(w), (A10) xexp(IZJ 2 9 (@) ¥i5u(©)Yjga(@)
and
B2 Qup2 S .Z,;]- (A18)
i (@) =iwd;— B, (A11) '

is the inverse Green’s function for the d electrons. The quan- We obtain forZ,(SG) at the replica symmetric saddle
tity Zsg in Eq. (A9) is the partition function for the localized Point

f electrons,
Uarp=0= lim 2 (Sish (A19)
Zs6= f D (" ) e or2i 195 (@) jol0) + Asg, F T o n(n- 1>
(A12)
. : : , gt x= lim = > (SLSE) (A20)
where the inverse Green’s function for the localized, nonin- Qaa=0TX ho N G N TaTel
teracting f electrons is now modified by the Kondo interac-

fom Z,(SG ~e~ MRBINC+200A (qy),  (A21)

g5 (@)= (iw—Beo) dij — BPIN Ny (@) (AL3)

where
andAgg is given in Eq.(12).
The interesting part of the free energy is given by A(q,;)= f_ H DZ;H f_ H D§aj|a(q,;{z,-},{§aj})
1 z A22
Zy and
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g

-1
— €% 0,0 MGij 7o)

D(Yetra)@XP 24 25 Gijul ) hlpa(©) fjra( @)
(A23)
where, makinghy=0

Gijoa(®)=0jj (@)~ 80 V2083z + V2xBIE ).
(A24)

Introducing Eqs(A23) and(A22) into Eq.(A21), we ob-
tain from Eq.(A15) the expression for the free energy in Eq.
(15) of the main text.

PHYSICAL REVIEW B3 054409

The order paramete?in Eqg. (A20) is related to the uni-
form static susceptibilityy of the localized f electrons

1 4%InZ)

=0

(A25)
hO

as it was discussed in our previous publicatith¥ In the
Sherrington—Kirkpatrick mod&l we have the identityg>K
=1 and Eq.(A20) reduces to the known expressiqmy
=B(1—q), while in the present model the occupation num-
ber fluctuates ang must be determined self-consistently.
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