365 research outputs found

    Relativistic three-particle scattering equations

    Get PDF
    We derive a set of relativistic three-particle scattering equations in the three-particle c.m. frame employing a relativistic three-particle propagator suggested long ago by Ahmadzadeh and Tjon in the c.m. frame of a two-particle subsystem. We make the coordinate transformation of this propagator from the c.m. frame of the two-particle subsystem to the three-particle c.m. frame. We also point out that some numerical applications of the Ahmadzadeh and Tjon propagator to the three-nucleon problem use unnecessary nonrelativistic approximations which do not simplify the computational task, but violate constraints of relativistic unitarity and/or covariance.Comment: 5pages, text and one ps figure (in revtex) include

    Relativistic three-body bound states and the reduction from four to three dimensions

    Full text link
    Beginning with an effective field theory based upon meson exchange, the Bethe-Salpeter equation for the three-particle propagator (six-point function) is obtained. Using the one-boson-exchange form of the kernel, this equation is then analyzed using time-ordered perturbation theory, and a three-dimensional equation for the propagator is developed. The propagator consists of a pre-factor in which the relative energies are fixed by the initial state of the particles, an intermediate part in which only global propagation of the particles occurs, and a post-factor in which relative energies are fixed by the final state of the particles. The pre- and post-factors are necessary in order to account for the transition from states where particles are off their mass shell to states described by the global propagator with all of the particle energies on shell. The pole structure of the intermediate part of the propagator is used to determine the equation for the three-body bound state: a Schr{\"o}dinger-like relativistic equation with a single, global Green's function. The role of the pre- and post-factors in the relativistic dynamics is to incorporate the poles of the breakup channels in the initial and final states. The derivation of this equation by integrating over the relative times rather than via a constraint on relative momenta allows the inclusion of retardation and dynamical boost corrections without introducing unphysical singularities.Comment: REVTeX, 21 pages, 4 figures, epsf.st

    Relativistic Effect on Low-Energy Nucleon-Deuteron Scattering

    Full text link
    The relativistic effect on differential cross sections, nucleon-to-nucleon and nucleon-to-deuteron polarization transfer coefficients, and the spin correlation function, of nucleon-deuteron elastic scattering is investigated employing several three-dimensional relativistic three-body equations and several nucleon-nucleon potentials. The polarization transfer coefficients are found to be sensitive to the details of the nucleon-nucleon potentials and the relativistic dynamics employed, and prefer trinucleon models with the correct triton binding energy. (To appear in Phys. Rev. C)Comment: pages: 21, LaTex text + 7 ps-figures at the en

    Paradoxical aortic stiffening and subsequent cardiac dysfunction in Hutchinson-Gilford progeria syndrome

    Full text link
    [EN] Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare disorder with devastating sequelae resulting in early death, presently thought to stem primarily from cardiovascular events. We analyse novel longitudinal cardiovascular data from a mouse model of HGPS (Lmna(G609G/G609G)) using allometric scaling, biomechanical phenotyping, and advanced computational modelling and show that late-stage diastolic dysfunction, with preserved systolic function, emerges with an increase in the pulse wave velocity and an associated loss of aortic function, independent of sex. Specifically, there is a dramatic late-stage loss of smooth muscle function and cells and an excessive accumulation of proteoglycans along the aorta, which result in a loss of biomechanical function (contractility and elastic energy storage) and a marked structural stiffening despite a distinctly low intrinsic material stiffness that is consistent with the lack of functional lamin A. Importantly, the vascular function appears to arise normally from the low-stress environment of development, only to succumb progressively to pressure-related effects of the lamin A mutation and become extreme in the peri-morbid period. Because the dramatic life-threatening aortic phenotype manifests during the last third of life there may be a therapeutic window in maturity that could alleviate concerns with therapies administered during early periods of arterial development.This work was supported, in part, by grants from the US National Institutes of Health: R01 HL105297 (J.D.H.) and P01 HL134605 (Dan Rifkin) and R01 AG047632 and R33 ES025636 (G.S.S.)Murtada, SI.; Kawamura, Y.; Caulk, AW.; Ahmadzadeh, H.; Mikush, N.; Zimmerman, K.; Kavanagh, D.... (2020). Paradoxical aortic stiffening and subsequent cardiac dysfunction in Hutchinson-Gilford progeria syndrome. Journal of The Royal Society Interface. 17(166):1-12. https://doi.org/10.1098/rsif.2020.00661121716

    Relativistic Corrections to the Triton Binding Energy

    Full text link
    The influence of relativity on the triton binding energy is investigated. The relativistic three-dimensional version of the Bethe-Salpeter equation proposed by Blankenbecler and Sugar (BbS) is used. Relativistic (non-separable) one-boson-exchange potentials (constructed in the BbS framework) are employed for the two-nucleon interaction. In a 34-channel Faddeev calculation, it is found that relativistic effects increase the triton binding energy by about 0.2 MeV. Including charge-dependence (besides relativity), the final triton binding energy predictions are 8.33 and 8.16 MeV for the Bonn A and B potential, respectively.Comment: 25 pages of text (latex), 1 figure (not included, available upon request

    Human KIT+ myeloid cells facilitate visceral metastasis by melanoma.

    Get PDF
    Metastasis of melanoma significantly worsens prognosis; thus, therapeutic interventions that prevent metastasis could improve patient outcomes. Here, we show using humanized mice that colonization of distant visceral organs with melanoma is dependent upon a human CD33+CD11b+CD117+ progenitor cell subset comprising \u3c4% of the human CD45+ leukocytes. Metastatic tumor-infiltrating CD33+ cells from patients and humanized (h)NSG-SGM3 mice showed converging transcriptional profiles. Single-cell RNA-seq analysis identified a gene signature of a KIT/CD117-expressing CD33+ subset that correlated with decreased overall survival in a TCGA melanoma cohort. Thus, human CD33+CD11b+CD117+ myeloid cells represent a novel candidate biomarker as well as a therapeutic target for metastatic melanoma

    Interventional procedures for refractory neuropathic pain

    Get PDF
    Neuropathic pain is an increasingly common disease affecting millions of individuals worldwide. Refractory pain poses a significant impact on patients’ quality of life, financial and economic stability, and social interaction. Numerous effective modalities for treatment of refractory neuropathic pain are presently available. Currently, many options provide symptomatic treatment but are associated with an unfavorable side effect profile and increased risk of addiction. The present investigation reviews current medical management for refractory neuropathic pain including the use of antidepressants, anticonvulsants, gabapentinoids and opioid therapy, as well as interventional pain procedures such as spinal cord stimulation (SCS) and intrathecal targeted drug delivery. While multidisciplinary management with lifestyle modification and pharmacologic regimens remains at the forefront of treating many of these patients, interventional modalities are growing in popularity and have been demonstrated to be highly efficacious. In this regard, continued understanding of the pathophysiology surrounding refractory neuropathic pain has led to the development of interventional procedures and better outcomes for patients suffering from refractory neuropathic pain. When and if patients fail conservative therapy, interventional techniques are desirable alternatives for pain management. SCS and intrathecal targeted drug delivery are important tools for the treatment of refractory neuropathic pain. In summary, treatment modalities for refractory neuropathic pain are evolving with demonstrated efficacy. This review aims to outline the efficacy of various interventional procedures for refractory neuropathic pain in comparison to traditional drug therapies

    T cell subpopulations in lymph nodes may not be predictive of patient outcome in colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immune response has been proposed to be an important factor in determining patient outcome in colorectal cancer (CRC). Previous studies have concentrated on characterizing T cell populations in the primary tumour where T cells with regulatory effect (Foxp3+ Tregs) have been identified as both enhancing and diminishing anti-tumour immune responses. No previous studies have characterized the T cell response in the regional lymph nodes in CRC.</p> <p>Methods</p> <p>Immunohistochemistry was used to analyse CD4, CD8 or Foxp3+ T cell populations in the regional lymph nodes of patients with stage II CRC (n = 31), with (n = 13) or without (n = 18) cancer recurrence after 5 years of follow up, to determine if the priming environment for anti-tumour immunity was associated with clinical outcome.</p> <p>Results</p> <p>The proportions of CD4, CD8 or Foxp3+ cells in the lymph nodes varied widely between and within patients, and there was no association between T cell populations and cancer recurrence or other clinicopathological characteristics.</p> <p>Conclusions</p> <p>These data indicate that frequency of these T cell subsets in lymph nodes may not be a useful tool for predicting patient outcome.</p

    Cranial biomechanics in basal urodeles: the Siberian salamander (Salamandrella keyserlingii) and its evolutionary and developmental implications

    Get PDF
    Developmental changes in salamander skulls, before and after metamorphosis, afect the feeding capabilities of these animals. How changes in cranial morphology and tissue properties afect the function of the skull are key to decipher the early evolutionary history of the crown-group of salamanders. Here, 3D cranial biomechanics of the adult Salamandrella keyserlingii were analyzed under diferent tissue properties and ossifcation sequences of the cranial skeleton. This helped unravel that: (a) Mechanical properties of tissues (as bone, cartilage or connective tissue) imply a consensus between the stifness required to perform a function versus the fxation (and displacement) required with the surrounding skeletal elements. (b) Changes on the ossifcation pattern, producing fontanelles as a result of bone loss or failure to ossify, represent a trend toward simplifcation potentially helping to distribute stress through the skull, but may also imply a major destabilization of the skull. (c) Bone loss may be originated due to biomechanical optimization and potential reduction of developmental costs. (d) Hynobiids are excellent models for biomechanical reconstruction of extinct early urodeles

    A Modified Consumer Inkjet for Spatiotemporal Control of Gene Expression

    Get PDF
    This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 ”m thick agar embedded in micro-wells machined into commercial compact discs. Spatio-temporal regulation of the lac operon was demonstrated via the printing of patterns of lactose and glucose directly into the cultures; X-Gal blue patterns were used for visual feedback. We demonstrate how the bistable nature of the lac operon's feedback, when perturbed by patterning lactose (inducer) and glucose (inhibitor), can lead to coordination of cell expression patterns across a field in ways that mimic motifs seen in developmental biology. Examples of this include sharp boundaries and the generation of traveling waves of mRNA expression. To our knowledge, this is the first demonstration of reaction-diffusion effects in the well-studied lac operon. A finite element reaction-diffusion model of the lac operon is also presented which predicts pattern formation with good fidelity
    • 

    corecore