149 research outputs found

    Polymer Composites in Green Technology: A Review

    Get PDF
    Rapid depletion of fossil resources, high demand for energy and global warming together encourage us to look for renewable polymer items with low carbon. ‘Green monomers’ could be derived from bio-refineries, biowastes or renewable oil, plastics-waste. The polymer obtained from such green monomers are renewable and can display good characteristics equivalent to the traditional polymers or sometimes better than the existing polymers. Green technology is a global movement to create vibrant and sustainable cities. Green technology addresses social, economic and environmental values and creates a green economy. Green technology is based on the process of using waste materials for beneficial purposes by managing, and recycling the waste. This technology involves the waste treatment, incineration and management. Many materials prepared form green composites are cost effective in-terms less consumption of electricity, and water, at the same time a significant decrease in CO2 emission, and solid waste generation. The present review presents the effective techniques, difficulties, applications & information on bio-polymers, natural fiber reinforcements, properties of the different green composites and recommendations

    Zircon to monazite phase transition in CeVO4

    Full text link
    X-ray diffraction and Raman-scattering measurements on cerium vanadate have been performed up to 12 and 16 GPa, respectively. Experiments reveal that at 5.3 GPa the onset of a pressure-induced irreversible phase transition from the zircon to the monazite structure. Beyond this pressure, diffraction peaks and Raman-active modes of the monazite phase are measured. The zircon to monazite transition in CeVO4 is distinctive among the other rare-earth orthovanadates. We also observed softening of external translational Eg and internal B2g bending modes. We attributed it to mechanical instabilities of zircon phase against the pressure-induced distortion. We additionally report lattice-dynamical and total-energy calculations which are in agreement with the experimental results. Finally, the effect of non-hydrostatic stresses on the structural sequence is studied and the equations of state of different phases are reported.Comment: 45 pages, 8 figures, 8 table

    Preparation, structural characterisation and antibacterial properties of Ga-doped sol-gel phosphate-based glass

    Get PDF
    A sol-gel preparation of Ga-doped phosphate-based glass with potential application in antimicrobial devices has been developed. Samples of composition (CaO)(0.30)(Na2O)(0.20-x) (Ga2O3) (x) (P2O5)(0.50) where x = 0 and 0.03 were prepared, and the structure and properties of the gallium-doped sample compared with those of the sample containing no gallium. Analysis of the P-31 MAS NMR data demonstrated that addition of gallium to the sol-gel reaction increases the connectivity of the phosphate network at the expense of hydroxyl groups. This premise is supported by the results of the elemental analysis, which showed that the gallium-free sample contains significantly more hydrogen and by FTIR spectroscopy, which revealed a higher concentration of -OH groups in that sample. Ga K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure data revealed that the gallium ions are coordinated by six oxygen atoms. In agreement with the X-ray absorption data, the high-energy XRD results also suggest that the Ga3+ ions are octahedrally coordinated with respect to oxygen. Antimicrobial studies demonstrated that the sample containing Ga3+ ions had significant activity against Staphylococcus aureus compared to the control

    High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4

    Full text link
    [EN] Monazite-type BiPO4, LaPO4, CePO4, and PrPO4 have been studied under high pressure by ab initio simulations and Raman spectroscopy measurements in the pressure range of stability of the monazite structure. A good agreement between experimental and theoretical Raman-active mode frequencies and pressure coefficients has been found which has allowed us to discuss the nature of the Raman-active modes. Besides, calculations have provided us with information on how the crystal structure is modified by pressure. This information has allowed us to determine the equation of state and the isothermal compressibility tensor of the four studied compounds. In addition, the information obtained on the polyhedral compressibility has been used to explain the anisotropic axial compressibility and the bulk compressibility of monazite phosphates. Finally, we have carried out a systematic discussion on the high-pressure behavior of the four studied phosphates in comparison to results of previous studies.The authors are thankful for the financial support to this research from the Spanish Ministerio de Economia y Competitividad, the Spanish Research Agency, and the European Fund for Regional Development under Grant Nos: MAT2016-75586-C4-1-P/2-P/3-P and MAT2015-71070-REDC. AM and PR-H acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster.Errandonea, D.; Gomis, O.; Rodríguez Hernández, P.; Muñoz, A.; Ruiz Fuertes, J.; Gupta, M.; Achary, S.... (2018). High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4. Journal of Physics Condensed Matter. 30(6). https://doi.org/10.1088/1361-648X/aaa20dS30

    Overexpression of Myocilin in the Drosophila Eye Activates the Unfolded Protein Response: Implications for Glaucoma

    Get PDF
    Glaucoma is the world's second leading cause of bilateral blindness with progressive loss of vision due to retinal ganglion cell death. Myocilin has been associated with congenital glaucoma and 2-4% of primary open angle glaucoma (POAG) cases, but the pathogenic mechanisms remain largely unknown. Among several hypotheses, activation of the unfolded protein response (UPR) has emerged as a possible disease mechanism.We used a transgenic Drosophila model to analyze whole-genome transcriptional profiles in flies that express human wild-type or mutant MYOC in their eyes. The transgenic flies display ocular fluid discharge, reflecting ocular hypertension, and a progressive decline in their behavioral responses to light. Transcriptional analysis shows that genes associated with the UPR, ubiquitination, and proteolysis, as well as metabolism of reactive oxygen species and photoreceptor activity undergo altered transcriptional regulation. Following up on the results from these transcriptional analyses, we used immunoblots to demonstrate the formation of MYOC aggregates and showed that the formation of such aggregates leads to induction of the UPR, as evident from activation of the fluorescent UPR marker, xbp1-EGFP. CONCLUSIONS / SIGNIFICANCE: Our results show that aggregation of MYOC in the endoplasmic reticulum activates the UPR, an evolutionarily conserved stress pathway that culminates in apoptosis. We infer from the Drosophila model that MYOC-associated ocular hypertension in the human eye may result from aggregation of MYOC and induction of the UPR in trabecular meshwork cells. This process could occur at a late age with wild-type MYOC, but might be accelerated by MYOC mutants to account for juvenile onset glaucoma

    Biotechnological Perspective of Reactive Oxygen Species (ROS)-Mediated Stress Tolerance in Plants

    Get PDF
    All environmental cues lead to develop secondary stress conditions like osmotic and oxidative stress conditions that reduces average crop yields by more than 50% every year. The univalent reduction of molecular oxygen (O2) in metabolic reactions consequently produces superoxide anions (O2•−) and other reactive oxygen species (ROS) ubiquitously in all compartments of the cell that disturbs redox potential and causes threat to cellular organelles. The production of ROS further increases under stress conditions and especially in combination with high light intensity. Plants have evolved different strategies to minimize the accumulation of excess ROS like avoidance mechanisms such as physiological adaptation, efficient photosystems such as C4 or CAM metabolism and scavenging mechanisms through production of antioxidants and antioxidative enzymes. Ascorbate-glutathione pathway plays an important role in detoxifying excess ROS in plant cells, which includes superoxide dismutase (SOD) and ascorbate peroxidase (APX) in detoxifying O2•−radical and hydrogen peroxide (H2O2) respectively, monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) involved in recycling of reduced substrates such as ascorbate and glutathione. Efficient ROS management is one of the strategies used by tolerant plants to survive and perform cellular activities under stress conditions. The present chapter describes different sites of ROS generation and and their consequences under abiotic stress conditions and also described the approaches to overcome oxidative stress through genomics and genetic engineering

    Nonlinear coupled zigzag theory for buckling of hybrid piezoelectric plates

    No full text
    A coupled zigzag theory for hybrid piezoelectric plates, recently developed by the first author, is extended to include geometric nonlinearity in the Von Karman sense. In this theory, the potential field is approximated as piecewise linear across sublayers. The deflection approximation accounts for the transverse normal strain due to an electric field. The inplane displacements are assumed to follow a global third order variation across the thickness with a layerwise linear variation. The shear continuity conditions at the layer interfaces and the shear traction-free conditions at the top and bottom are enforced to formulate the theory in terms of only five primary displacement variables, independent of the number of layers. The coupled nonlinear equations of equilibrium and the boundary conditions are derived from a variational principle. The nonlinear theory is used to obtain the initial buckling response of symmetrically laminated hybrid plates under inplane electromechanical loading. Analytical solutions for buckling of simply supported plates under uniaxial and bi-axial inplane strains and electric potential are obtained for comparing the results with the available exact three-dimensional piezoelasticity solution. The comparison establishes that the present theory is very accurate for buckling response of hybrid plates even for highly inhomogeneous lay-ups
    • …
    corecore