1,085 research outputs found

    Species- and organ-specificity of secretory proteins derived from human prostate and seminal vesicles

    Get PDF
    Polyclonal antibodies against semenogelin (SG) isolated from human seminal vesicle secretion and acid phosphatase (PAP), β‐microseminoprotein (β‐MSP), and Prostate‐Specific Antigen (PSA) derived from human prostatic fluid, as well as a monoclonal antibody against β‐MSP were used for immunocytochemical detection of the respective antigens in different organs from different species. SG immunoreactivity was detected in the epithelium of the pubertal and adult human and in monkey seminal vesicle, ampulla of the vas deferens, and ejaculatory duct. PAP, β‐MSP, and PSA immunoreactivities were detected in the pubertal and adult human prostate and the cranial and caudal monkey prostate. With the exception of a weak PSA immunoreactivity in the proximal portions of the ejaculatory duct, none of the latter antisera reacted with seminal vesicle, ampullary, and ejaculatory duct epithelium. Among the non‐primate species studied (dog, bull, rat, guinea pig) only the canine prostatic epithelium displayed a definite immunoreactivity with the PAP antibody and a moderate reaction with the PSA antibody. No immunoreaction was seen in bull and rat seminal vesicle and canine ampulla of the vas deferens with the SG antibody. The same was true for the (ventral) prostate of rat, bull, and dog for β‐MSP. The epithelium of the rat dorsal prostate showed a slight cross‐reactivity with the monoclonal antibody against β‐MSP and one polyclonal antibody against PSA. The findings indicate a rather strict species‐dependent expression of human seminal proteins which show some similarities in primates, but only marginal relationship to species with different physiology of seminal fluid

    Opinion Dynamics with Random Actions and a Stubborn Agent

    Full text link
    We study opinion dynamics in a social network with stubborn agents who influence their neighbors but who themselves always stick to their initial opinion. We consider first the well-known DeGroot model. While it is known in the literature that this model can lead to consensus even in the presence of a stubborn agent, we show that the same result holds under weaker assumptions than has been previously reported. We then consider a recent extension of the DeGroot model in which the opinion of each agent is a random Bernoulli distributed variable, and by leveraging on the first result we establish that this model also leads to consensus, in the sense of convergence in probability, in the presence of a stubborn agent. Moreover, all agents' opinions converge to that of the stubborn agent.Comment: 5 pages; This work was presented at Asilomar Conference on Signals, Systems, and Computers 201

    Consumption of bilberries controls gingival inflammation

    Get PDF
    Bioactive molecules in berries may be helpful in reducing the risk of oral diseases. The aim of this study was to determine the effect of bilberry consumption on the outcome of a routine dental clinical parameter of inflammation, bleeding on probing (BOP), as well as the impact on selected biomarkers of inflammation, such as cytokines, in gingival crevicular fluid (GCF) in individuals with gingivitis. Study individuals who did not receive standard of care treatment were allocated to either a placebo group or to groups that consumed either 250 or 500 g bilberries daily over seven days. The placebo group consumed an inactive product (starch). A study group, receiving standard of care (debridement only) was also included to provide a reference to standard of care treatment outcome. Cytokine levels were assayed using the Luminex MagPix system. The mean reduction in BOP before and after consumption of test product over 1 week was 41% and 59% in the groups that consumed either 250 or 500 g of bilberries/day respectively, and was 31% in the placebo group, and 58% in the standard of care reference group. The analysis only showed a significantreduction in cytokine levels in the group that consumed 500 g of bilberries/day. A statistically significant reduction was observed for IL-1β (p = 0.025), IL-6 (p = 0.012) and VEGF (p = 0.017) in GCF samples in the group that consumed 500 g of bilberries daily. It appears that berry intake has an ameliorating effect on some markers of gingival inflammation reducing gingivitis to a similar extent compared to standard of care

    Analysis of mesoscale effects in high-shear granulation through a computational fluid dynamics-population balance coupled compartment model

    Get PDF
    There is a need for mesoscale resolution and coupling between flow-field information and the evolution of particle properties in high-shear granulation. We have developed a modelling framework that compartmentalizes the high-shear granulation process based on relevant process parameters in time and space. The model comprises a coupled-flow-field and population-balance solver and is used to resolve and analyze the effects of mesoscales on the evolution of particle properties. A Diosna high-shear mixer was modelled with microcrystalline cellulose powder as the granulation material. An analysis of the flow-field solution and compartmentalization allows for a resolution of the stress and collision peak at the impeller blades. Different compartmentalizations showed the importance of resolving the impeller region, for aggregating systems and systems with breakage. An independent study investigated the time evolution of the flow field by changing the particle properties in three discrete steps that represent powder mixing, the initial granulation stage mixing and the late stage granular mixing. The results of the temporal resolution study show clear changes in collision behavior, especially from powder to granular mixing, which indicates the importance of resolving mesoscale phenomena in time and space

    Selective Photocatalytic Reduction of CO2-to-CO in Water using a Polymeric Carbon Nitride Quantum Dot/Fe-Porphyrin Hybrid Assembly

    Get PDF
    Visible light-driven conversion of CO2 into more value-added products is a promising technology not only for diminution of CO2 emission but also for solar energy storage in the form of chemical energy. However, photocatalytic materials that can efficiently and selectively reduce CO2-to-CO in a fully aqueous solution typically involve precious metals that limit their suitability for large scale applications. Herein, a novel photocatalytic assembly is reported, consisting of polymeric carbon nitride quantum dots (CNQDs) as the visible light absorber and a Fe-porphyrin complex (Fe-p-TMA) as the catalyst for CO2-to-CO conversion. Both components were carefully selected to allow for excellent solubility in water as well as improved electronic communication through complementary electrostatic and π-π interactions. This CNQD ⋅ [Fe-p-TMA] hybrid assembly, at the optimized molar ratio, can produce CO with a turnover number (TON) exceeding 105 and selectivity ∼96 % after 10 hours of visible light irradiation (400–700 nm). It is postulated that the enhanced CO2-to-CO transformation performance is due to the convenience of a more direct charge transfer (CT) pathway between the CNQDs and [Fe-p-TMA] motif

    Cold SO_2 molecules by Stark deceleration

    Get PDF
    We produce SO_2 molecules with a centre of mass velocity near zero using a Stark decelerator. Since the initial kinetic energy of the supersonic SO_2 molecular beam is high, and the removed kinetic energy per stage is small, 326 deceleration stages are necessary to bring SO_2 to a complete standstill, significantly more than in other experiments. We show that in such a decelerator possible loss due to coupling between the motional degrees of freedom must be considered. Experimental results are compared with 3D Monte-Carlo simulations and the quantum state selectivity of the Stark decelerator is demonstrated.Comment: 7 pages, 5 figure

    Programmable models of growth and mutation of cancer-cell populations

    Full text link
    In this paper we propose a systematic approach to construct mathematical models describing populations of cancer-cells at different stages of disease development. The methodology we propose is based on stochastic Concurrent Constraint Programming, a flexible stochastic modelling language. The methodology is tested on (and partially motivated by) the study of prostate cancer. In particular, we prove how our method is suitable to systematically reconstruct different mathematical models of prostate cancer growth - together with interactions with different kinds of hormone therapy - at different levels of refinement.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    Get PDF
    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.Comment: 25 pages, 7 figures, incl. supplementary informatio
    corecore