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The Role of Ca2 + as a Trigger for Membrane Fusion 
M. Gratzl, R. Ekerdt, G. Dahl, Dept. of Physiological Chemistry and Physiology, University of Saarland, 

Homburg/Saar, FRG 

Summary 

As revealed by freeze-fracturing, secretory vesicles iso-
iated from pancreatic islet cells fuse when incubated 
withlow concentration of C a 2 + . The properties of 
this process are described and were found to be similar 
to those investigated with isolated secretory vesicles 
from different tissue origin. Secretory vesicle fusion 
is compared mainly with the ionic requirements of 
insulin secretion by the pancreatic B-cell and exocyto-
sis by other secretory cells. 

Introduction 

Düring secretion by exocytosis secretory vesicles fuse 
with the cell membrane and discharge their Contents 
into the extracellular Space. The secretory vesicle 
membranes become inserted into the cell membrane. 
In this way, receptors present on the inner surface of 
secretory vesicle membranes become accessible as 
targets for circulating hormones (Bergeron et al 1973). 

An analogous Situation is seen with 5'-nucleotidase, 
which is widely used as a marker enzyme for cell 
membranes but is also present in secretory vesicle 
membranes (Farquhar et al 1974). A similar relation-
ship between secretory vesicles and the cell membrane 
was described for adenylate cyclase which is present 
on the cytoplasmic surface of the secretory vesicle 
membrane and which, following fusion, is found on 
the cytoplasmic surface of the cell membrane (Cheng 
and Farquhar 1976a, b) (Fig. 1). 
The factors responsible for membrane fusion during 
exocytosis are present in the cell membrane as well 
as in secretory vesicle membranes. This can be con-
cluded from the Observation that, in stimulated cells, 
secretory vesicles fuse together as well as with the cell 
membrane ("Compound exocytosis") (Fig. 1). Com
pound exocytosis occurs in mast cells (Röhlich et al 
1971) in salivary glands (Amsterdam et al 1969; Hand 
1970), in exocrine and endocrine pancreatic cells 
(Ekholm et al 1962; Berger et al 1975), in adrenal 
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Fig. 1 (a) In the cell membrane, as well as in secretory vesicle 
membranes, two surfaces can be distinguished, the cyto-
plasmatic surfaces (the proteins or lipids of which are marked 
with open symbols) and the surfaces adjacent to the extra
cellular fluid as well as the intravesicular space (filled 
symbols). 
(b) Düring exoeytosis secretory vesicles fuse with the cell 
membrane and discharge their content into the extracellular 
Space. The inner surface of the secretory vesicle membrane 
becomes the outer surface of the cell membrane. 
(c) Compound exoeytosis is characterized by fusion secretory 
vesicles among each other and with the cell membrane 

medullary cells (Fenwick et al 1978; Aunis et al 
1979), in adenohypophyseal and neurophyseal cells 
(DeVirgilis et al 1968; Gratzl et al 1977) as well as 
in other neurosecretory cells (Normann 1970; 
Andrew and Shivers 1976). 

In this contribution the properties of intervesicular 
fusion of secretory vesicles from pancreatic islet cells 
(Dahl and Gratzl 1976) as well as from liver (Gratzl 
and Dahl 1976, 1978), neurohypophysis (Gratzl et al 
1977) and adrenal medulla (Dahl et al 1979; Gratzl 
et al 1979; Dahl et al 1977) will be described and 
compared with the properties of secretion by the pan
creatic B-cell as well as other secretory cells. 

Intervesicular Fusion 

[n freeze-fracture electron micrographs secretory 
vesicles isolated from pancreatic islet cells are indistin-
guishable from those in intact cells. After addition of 
C a 2 + , fused vesicles can be observed, which are 
characterized by a continuous cleavage plane in both 
membrane faces. This is shown for isolated secretory 
vesicles from pancreatic islet cells in Figure 2. Fusion 
of secretory vesicles by low concentrations of calcium 
has also been observed with secretory vesicles from 
liver (Gratzl and Dahl 1976; 1978), neurohyophysis 
(Gratzl et al 1977) and adrenal medulla (Gratzl et al 
1979; Dahl et al 1979). Fusion of isolated secretory 
vesicles has also been followed by thin section electron 
microscopy (Dahl et al 1979) and biochemical methods 
(Quinn and Judah 1978). To quantify membrane 
fusion the percentage of fused vesicles ("twinned 
vesicles") was determined after ineubation with differ-
ent C a 2 + concentrations (Fig. 3). Intervesicular fusion 
increases from 10"7 to l O ^ M C a 2 + and is half maxi-
mum around 10" 6 M, at which point around 50% of 
the fusion obtained with 10" 4 M C a 2 + has occurred. 
Such sigmoidal curves are also obtained with secretory 
vesicles from liver (Gratzl and Dahl 1978), neuro
hypophysis (Gratzl et al 1977) and adrenal medulla 
(Dahl et al 1979; Gratzl et al 1979). These vesicles, as 
well as the vesicles isolated from pancreatic islet cells, 
do not fuse when ineubated with any other divalent 
cations in concentrations up to 10" 3 M. M g 2 + added 
with C a 2 + to secretory vesicles inhibits Ca 2 +-induced 
fusion in a concentration-dependent 
manner. 
The ionic requirements for fusion of secretory vesicle 
membranes differ from that described for pure phos-
pholipid membranes (for review see Papahadjopoulos 
1978) and phospholipid membranes prepared from 
the lipid of secretory vesicle membranes (Dahl et al 
1977; Gratzl et al 1979). Briefly, these membranes 
fuse if C a 2 + at 10~4 or higher concentrations is added; 
in most cases M g 2 + can replace C a 2 + , and addition of 
C a 2 + as well as M g 2 + has an additive effect. 
With concentration of C a 2 + greater then 2.5mM a 
second type of fusion of secretory vesicles has been 
detected. The properties of this type of reaction with 
respect to influence of divalent cations closely re-
sembles that of the fusion of phospholipid membranes. 
Furthermore, fusion of secretory vesicles with high 
concentrations of divalent cations is not affected by 
treatment attacking membrane proteins such as 
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Fig. 2 Freeze-fracture electron micrograph of secretory vesicles from pancreatic B-cells fused in vitro by incubation in an 
isotonic medium containing 10"5M Ca 2 + ."Twinned vesicle "with continuous cleavage plane in membrane PF-faces (left) and 
membrane EF-faces (right). Nomenclature of fracture faces: Branton et al (1975) (From Dahl and Gratzl 1976). Magnifica-
tion: x 80.000 
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Fig. 3 Fusion of isolated secretory vesicles from pancreatic 
islet cells as a function of the free C a 2 + concentration 

proteases, glutaraldehyde or neuraminidase, which 
abolish fusion of secretory vesicles by low concentra
tions of Ca 2 + (Gratzl and Dahl 1978; Gratzl et al 1979; 
Dahl et al 1979). Two types of membranes fusion, a 
Ca 2 +-specific one at lower concentrations and a type 
of fusion elicited by divalent cations at higher concen
trations, have also been found by using isolated cell 
membranes from myoblasts in culture (Schudt et al 
1976; Dahl et al 1978). As described for isolated 
secretory vesicles, the Ca2 +-specific fusion of myo-
blast cell membranes is affected by proteases, glutar
aldehyde, neuraminidase and inhibitors of protein 
biosynthesis. Obviously proteinaceous membrane 
components participate in the Ca 2 +-specific fusion of 
biological membranes. 

lonic Requirements of Secretion by Intact Cells 

Insulin secretion by pancreatic B-cells stimulated by 
glucose or other secretagogues requires the presence 

of C a 2 + in the extracellular fluid. With the exception 
of S r 2 + and B a 2 + , C a 2 + cannot be replaced by other 
divalent cations, such as B e 2 + , C d 2 + , C o 2 + , Mg 2 + , 
M n 2 + and N i 2 + (for review see Lambert 1976, 
Hedeskov 1979). 
Stimulation of pancreatic B-cells is paralled by in in-
crease of C a 2 + influx into the cells, suggesting that 
insulin release occurs when C a 2 + accumulates in the 
cytoplasm. Divalent cations, which cannot replace 
extracellular C a 2 + in stimulus-evoked secretion, have 
been found to interfere with C a 2 + entry into pan
creatic B-cells and other secretory cells. This might be 
the reason why these divalent cations depress glucose-
stimulated insulin release in media containing physiolo 
gical concentrations of C a 2 + . The functional 
importance of stimulant-induced C a 2 + influx is also 
shown by the inhibition of glucose-stimulated insulin 
release by organic C a 2 + antagonists (for review see 
Lambert 1976; Hedeskov 1979). 
Ca 2 + injected into the presynaptic nerve terminal in 
the giant Synapse of the squid evoked transmitter re
lease, whereas similar doses of M g 2 + and M n 2 + were 
ineffective. Injection of S r 2 + into the presynaptic 
axon had effects similar to those of Ca2"1". M g 2 + and 
M n 2 + led to a slight reduction in the amount of trans
mitter released by injection of C a 2 + (Miledi 1973). 
Similarly, injection of C a 2 + , but not M g 2 + , into mast 
cells elicited extrusion of secretory granules (Kanno et 
al 1973). Also microinjection of C a 2 + into oocytes 
resulted in cortical granule breakdown. M g 2 + did not 
induce this reaction (Hollinger and Schuetz 
1976). 
Transmitter release produced by membrane depolariza-
tion is directly correlated with the free intracellular 
C a 2 + concentration. This was shown by injection of 
aequorin. a protein that emits light in the presence of 
C a 2 + , into the presynaptic terminal of the squid giant 
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Synapse (Llinas and Nicholson 1975). Information on 
the concentration of free C a 2 + within a secretory cell 
is also given from experiments with squid axons. The 
determinations set a ränge for free C a 2 + of 10" 7M 
or less which increases during Stimulation (Baker et al 
1971; DiPolo et al 1976). Aequorin-injected eggs of 
a fresh water fish show an explosive rise in intracellular 
free C a 2 + concentrations during fertilization from 
10~7M to about 30/iM. This increase precedes cortical 
vesicle exoeytosis (Gilkey et al 1978). 

Parallelism between Intervesicular Fusion and 
Exoeytosis 

Fusion of secretory vesicles parallels the major findings 
observed with intact cells. It is low at C a 2 + concentra
tions found in resting cells and increases at concentra
tions found in stimulated cells. Thirdly, it is specific 
for Ca 2 +-ions, and fourthly, it is inhibited by divalent 
cations which cannot replace C a 2 + . Concerning the 
pancreatic B-cells, there are two exceptions to this 
rule. Replacement of extracellular C a 2 + by S r 2 + or 
B a 2 + allows a glucose-stimulated insulin release from 
pancreatic B-cells (Haies 1970; Malaisse et al 1970). 
The Situation with Ba 2 + seems to be rather complicat-
ed, since B a 2 + causes considerable insulin release with-
out stimulating concentrations of glucose. In this 
context, experiments with monolayer cultures of the 
endoerine pancreas are of interest, where extracellu
lar Ca2"1" with the aid of an ionophore was able to 
trigger insulin release, but B a 2 + (at nonstimulating 
concentrations) and S r 2 + were ineffective (Wollheim 
et al 1975). 
In experiments with intact cells, the extracellular con
centration of C a 2 + can easily be changed. The intra
cellular C a 2 + pools, surrounded by membranes, are 
more difficult to influence in a controlled manner. 
The low concentration of Ca 2 + in the intracellular 
fluid in pancreatic B-cells as well as in other secretory 
cells is rnaintained by severai energy-dependent Se
quester] ng Systems located in the mitochondria reticu-
lum and in secretory vesicles. The increase of intra
cellular free C a 2 + during Stimulation probably makes 
use of the high extracellular C a 2 + concentrations by 
changes of the ion fluxes across the cell membrane. 
C o 2 + or N i 2 + interfere with C a 2 + fluxes in the pan
creatic B-cells (Dormer et al 1974; Henquin and 
Lambert 1975) Sr 2+, B a 2 + and C o 2 + affect Ca 2 + 

fluxes in squid axons (Blaustein and Santiago 1977; 
DiPolo 1979). ATPase activated by low concentrations 
of C a 2 + have been found in islet subcellular fractions 
(Formby et al 1976). However, the importance of 
these ATPases for the reguiation of the free intracellu
lar C a 2 + concentration can be judged only if activa-
tion by Ca 2 + occurs similarly in the presence of milli-
molar concentrations of Mg 2+, present in the intra
cellular fluid (Brinley et al 1977). Also, the speci-
ficity of these Systems has not been investigated, but 
it is known from mitochondria isolated from other 

secretory cells that S r 2 + and other divalent cations are 
taken up by an energy-dependent mechanism (Vainio 
et al 1970) and that S r 2 + shares the same site as Ca 2 + 

and competes with this ion (Carafoli 1975). If the 
Systems responsible for the reguiation of low intra
cellular free C a 2 + concentrations are challenged, for 
example by injection of S r 2 + (Miledi 1973), this 
divalent cation could easily influence the transport 
and flux Systems in such a way that the free concen
tration of intracellular C a 2 + increases and triggers 
transmitter release. 
From the comparison of the properties of membrane 
fusion of subcellular membranes with the properties 
of secretion of insulin by the pancreatic B-cell,as well 
as other secretory cells, it can be concluded that both 
processes can occur under similar conditions. We have 
thus proposed that C a 2 + acts as the final intracellular 
messenger, triggering fusion of secretory vesicles with 
each other as well as with the cell membrane. 
From studies on secretory vesicle fusion, severai pre-
dictions for experiments with intact cells can be made. 
For example, from the knowledge that fusion of secre
tory vesicles decreases with temperature but can still 
be detected at 2°C (Gratzl and Dahl 1978), it can be 
concluded that exoeytotie membrane fusion should 
be able to take place at temperatures as low as 2°C. 
This has recently been shown for pancreatic B-cells, 
where low temperature, even in the absence of an 
external Stimulus, evokes exoeytotie release of insulin. 
Furthermore, under these conditions intervesicular 
fusion can be observed throughout the cell, pre-
sumably triggered by a gener al rise in the intracellular 
free C a 2 + concentration (Dahl and Henquin 1978). 
Cold-induced hormone release is also known to occur 
in the neurohypophysis (Douglas and Ishida 1965) and 
both biochemical (Hong and Poisner 1974) and 
morphological findings (Dreifuss et al 1974, Gratzl 
et al 1977) support an exoeytotie mechanism. 
The molecular mechanism, whereby C a 2 + interacts with 
membrane proteins or lipids to allow the membranes 
to be fused, is completefy unknown. Clearly, one of 
the first interactions of C a 2 + with membranes to be 
fused is binding. C a 2 + ion binding to secretory vesicles 
from pancreatic islet cells as well as other secretory 
cells has been studied by measurements of electro-
phoretic mobility (Dean 1974, 1975; Dean and 
Matthews 1975). From these investigations equilibrium 
constants for Ca 2 +-binding have been calculated to be 
in the millimolar ränge. C a 2 + binding to secretory 
vesicles from adrenal medulla was recently reinvesti-
gated using Ca2 +-sensitive indicator substances. It has 
turned out that, in addition to the low affinity sites 
already detected by electrophoretic mobility measure
ments, high affinity sites with a dissociation constant 
of 5 x 1 0 " 6 M are present at the secretory vesicle 
membrane from adrenal medulla (Dahl et al 1979). 
These sites may actually represent the button which 
is pressed to initiate the fusion mechanism. 
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