16 research outputs found

    On-Line Electrochemistry/Liquid Chromatography/Mass Spectrometry for the Simulation of Pesticide Metabolism

    Get PDF
    On-line electrochemistry/liquid chromatography/mass spectrometry (EC/LC/MS) was employed to mimic the oxidative metabolism of the fungicide boscalid. High-resolution mass spectrometry and MS/MS experiments were used to identify its electrochemical oxidation products. Furthermore, the introduction of a second electrochemical cell with reductive conditions provided important additional information on the oxidation products. With this equipment, hydroxylation, dehydrogenation, formation of a covalent ammonia adduct, and dimerization were detected after initial one-electron oxidation of boscalid to a radical cation. On-line reaction with glutathione yielded different isomeric covalent glutathione adducts. The results of the electrochemical oxidation are in good accordance with previously reported in vivo experiments, showing that EC/LC/MS is a useful tool for studying biotransformation reactions of various groups of xenobiotics

    Cell-Nanoparticle Interactions at (Sub)-Nanometer Resolution Analyzed by Electron Microscopy and Correlative Coherent Anti-Stokes Raman Scattering

    Get PDF
    A wide variety of nanoparticles are playing an increasingly important role in drug delivery. Label-free imaging techniques are especially desirable to follow the cellular uptake and intracellular fate of nanoparticles. The combined correlative use of different techniques, each with unique advantages, facilitates more detailed investigation about such interactions. The synergistic use of correlative coherent anti-Stokes Raman scattering and electron microscopy (C-CARS-EM) imaging offers label-free, chemically-specific, and (sub)-nanometer spatial resolution for studying nanoparticle uptake into cells as demonstrated in the current study. Coherent anti-Stokes Raman scattering (CARS) microscopy offers chemically-specific (sub)micron spatial resolution imaging without fluorescent labels while transmission electron microscopy (TEM) offers (sub)-nanometer scale spatial resolution and thus visualization of precise nanoparticle localization at the sub-cellular level. This proof-of-concept imaging platform with unlabeled drug nanocrystals and macrophage cells revealed good colocalization between the CARS signal and electron dense nanocrystals in TEM images. The correlative TEM images revealed subcellular localization of nanocrystals inside membrane bound vesicles, showing multivesicular body (MVB)-like morphology typical for late endosomes (LEs), endolysosomes, and phagolysosomes. C-CARS-EM imaging has much potential to study the interactions between a wide range of nanoparticles and cells with high precision and confidence.Peer reviewe

    The reference site collaborative network of the european innovation partnership on active and healthy ageing

    Get PDF
    Seventy four Reference Sites of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) have been recognised by the European Commission in 2016 for their commitment to excellence in investing and scaling up innovative solutions for active and healthy ageing. The Reference Site Collaborative Network (RSCN) brings together the EIP on AHA Reference Sites awarded by the European Commission, and Candidate Reference Sites into a single forum. The overarching goals are to promote cooperation, share and transfer good practice and solutions in the development and scaling up of health and care strategies, policies and service delivery models, while at the same time supporting the action groups in their work. The RSCN aspires to be recognized by the EU Commission as the principal forum and authority representing all EIP on AHA Reference Sites. The RSCN will contribute to achieve the goals of the EIP on AHA by improving health and care outcomes for citizens across Europe, and the development of sustainable economic growth and the creation of jobs

    On the inclusion of dissipation on top of mean-field approaches

    Get PDF
    International audienc

    European Validation of the Self-Evaluation of Negative Symptoms (SNS): A Large Multinational and Multicenter Study

    No full text
    Background: Negative symptoms are usually evaluated with scales based on observer ratings and up to now self-assessments have been overlooked. The aim of this paper was to validate the Self-evaluation of Negative Symptoms (SNS) in a large European sample coming from 12 countries. We wanted to demonstrate: (1) good convergent and divergent validities; (2) relationships between SNS scores and patients' functional outcome; (3) the capacity of the SNS compared to the Brief Negative Symptom Scale (BNSS) to detect negative symptoms; and (4) a five-domain construct in relation to the 5 consensus domains (social withdrawal, anhedonia, alogia, avolition, blunted affect) as the best latent structure of SNS.Methods: Two hundred forty-five subjects with a DSM-IV diagnosis of schizophrenia completed the SNS, the Positive and Negative Syndrome Scale (PANSS), the BNSS, the Calgary Depression Scale for Schizophrenia (CDSS), and the Personal and Social Performance (PSP) scale. Spearman's Rho correlations, confirmatory factor analysis investigating 4 models of the latent structure of SNS and stepwise multiple regression were performed.Results: Significant positive correlations were observed between the total score of the SNS and the total scores of the PANSS negative subscale (r = 0.37; P Conclusion: In a large European multicentric sample, this study demonstrated that the SNS has: (1) good psychometric properties with good convergent and divergent validities; (2) a five-factor latent structure; (3) an association with patients' functional outcome; and (4) the capacity to identify subjects with negative symptoms that is close to the BNSS and superior to the PANSS negative subscale.</p

    On the inclusion of dissipation on top of mean-field approaches

    No full text
    corecore