12 research outputs found
Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions
Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B
magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia,
and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance
ratios we found were 73% for alumina and 323% for magnesia-based tunnel
junctions. Additionally, tunnel junctions with a unified layer stack were
prepared for the three different barriers. In these systems, the tunnel
magnetoresistance ratios at optimum annealing temperatures were found to be 65%
for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The
similar tunnel magnetoresistance ratios of the tunnel junctions containing
alumina provide evidence that coherent tunneling is suppressed by the alumina
layer in the composite tunnel barrier.Comment: 3 pages,4 figures, 1 tabl
Seebeck Effect in Magnetic Tunnel Junctions
Creating temperature gradients in magnetic nanostructures has resulted in a
new research direction, i.e., the combination of magneto- and thermoelectric
effects. Here, we demonstrate the observation of one important effect of this
class: the magneto-Seebeck effect. It is observed when a magnetic configuration
changes the charge based Seebeck coefficient. In particular, the Seebeck
coefficient changes during the transition from a parallel to an antiparallel
magnetic configuration in a tunnel junction. In that respect, it is the analog
to the tunneling magnetoresistance. The Seebeck coefficients in parallel and
antiparallel configuration are in the order of the voltages known from the
charge-Seebeck effect. The size and sign of the effect can be controlled by the
composition of the electrodes' atomic layers adjacent to the barrier and the
temperature. Experimentally, we realized 8.8 % magneto-Seebeck effect, which
results from a voltage change of about -8.7 {\mu}V/K from the antiparallel to
the parallel direction close to the predicted value of -12.1 {\mu}V/K.Comment: 16 pages, 7 figures, 2 table
Elastic and inelastic conductance in Co-Fe-B/MgO/Co-Fe-B magnetic tunnel junctions
Khan AA, Schmalhorst J-M, Reiss G, et al. Elastic and inelastic conductance in Co-Fe-B/MgO/Co-Fe-B magnetic tunnel junctions. PHYSICAL REVIEW B. 2010;82(6): 064416.A systematic analysis of the bias voltage and temperature dependence of the tunneling magnetoresistance (TMR) in Co-Fe-B/MgO/Co-Fe-B magnetic tunnel junctions with barrier thickness t(B) between 1.8 and 4.0 nm has been performed. The resistance measured at low temperature in the parallel state shows the expected exponential increase with increasing barrier thickness. The low-temperature TMR amplitude of about 300% is quite similar for all MgO thicknesses. This is in accordance with microstructural investigations by transmission electron microscopy, which do not give hints to a reduction in the barrier quality with increasing MgO thickness. Both the junction resistance and TMR decrease with increasing temperature and bias voltage. In general, the decrease is much stronger for thicker barriers, e. g., a decrease in the TMR by a factor of 13.4 from 293% at 15 K to 21.9% at 300 K was observed for t(B) = 4.0 nm compared to a reduction by only a factor of 1.6 for t(B) = 1.8 nm. This behavior can be described self-consistently for all barrier thicknesses within a model that extends the magnon-assisted tunneling model by adding an inelastic, unpolarized tunneling contribution. Furthermore we discuss our results in the framework of a recent model by Lu et al. [Phys. Rev. Lett. 102, 176801 (2009)] claiming that polarized hopping conductance becomes important for larger MgO thickness
[Turgut Özal'a ait vefat ve başsağlığı ilanları]
Taha Toros Arşivi, Dosya No: 47-Turgut ÖzalUnutma İstanbul projesi İstanbul Kalkınma Ajansı'nın 2016 yılı "Yenilikçi ve Yaratıcı İstanbul Mali Destek Programı" kapsamında desteklenmiştir. Proje No: TR10/16/YNY/010