15 research outputs found

    Social isolation, mental health, and use of digital interventions in youth during the COVID-19 pandemic: a nationally representative survey

    No full text
    BackgroundPublic health measures to curb SARS-CoV-2 transmission rates may have negative psychosocial consequences in youth. Digital interventions may help to mitigate these effects. We investigated the associations between social isolation, COVID-19-related cognitive preoccupation, worries, and anxiety, objective social risk indicators, and psychological distress, as well as use of, and attitude toward, mobile health (mHealth) interventions in youth.MethodsData were collected as part of the "Mental Health And Innovation During COVID-19 Survey"-a cross-sectional panel study including a representative sample of individuals aged 16-25 years (N = 666; M-age = 21.3; assessment period: May 5, 2020 to May 16, 2020).ResultsOverall, 38% of youth met criteria for moderate or severe psychological distress. Social isolation worries and anxiety, and objective risk indicators were associated with psychological distress, with evidence of dose-response relationships for some of these associations. For instance, psychological distress was progressively more likely to occur as levels of social isolation increased (reporting "never" as reference group: "occasionally": adjusted odds ratio [aOR] 9.1, 95% confidence interval [CI] 4.3-19.1, p &lt; 0.001; "often": aOR 22.2, CI 9.8-50.2, p &lt; 0.001; "very often": aOR 42.3, CI 14.1-126.8, p &lt; 0.001). There was evidence that psychological distress, worries, and anxiety were associated with a positive attitude toward using mHealth interventions, whereas psychological distress, worries, and anxiety were associated with actual use.ConclusionsPublic health measures during pandemics may be associated with poor mental health outcomes in youth. Evidence-based digital interventions may help mitigate the negative psychosocial impact without risk of viral infection given there is an objective need and subjective demand.</p

    Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis.

    No full text
    Heterozygous loss-of-function mutations in the progranulin (GRN) gene and the resulting reduction of GRN levels is a common genetic cause for frontotemporal lobar degeneration (FTLD) with accumulation of TAR DNA-binding protein (TDP)-43. Recently, it has been shown that a complete GRN deficiency due to a homozygous GRN loss-of-function mutation causes neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. These findings suggest that lysosomal dysfunction may also contribute to some extent to FTLD. Indeed, Grn(-/-) mice recapitulate not only pathobiochemical features of GRN-associated FTLD-TDP (FTLD-TDP/GRN), but also those which are characteristic for NCL and lysosomal impairment. In Grn(-/-) mice the lysosomal proteins cathepsin D (CTSD), LAMP (lysosomal-associated membrane protein) 1 and the NCL storage components saposin D and subunit c of mitochondrial ATP synthase (SCMAS) were all found to be elevated. Moreover, these mice display increased levels of transmembrane protein (TMEM) 106B, a lysosomal protein known as a risk factor for FTLD-TDP pathology. In line with a potential pathological overlap of FTLD and NCL, Ctsd(-/-) mice, a model for NCL, show elevated levels of the FTLD-associated proteins GRN and TMEM106B. In addition, pathologically phosphorylated TDP-43 occurs in Ctsd(-/-) mice to a similar extent as in Grn(-/-) mice. Consistent with these findings, some NCL patients accumulate pathologically phosphorylated TDP-43 within their brains. Based on these observations, we searched for pathological marker proteins, which are characteristic for NCL or lysosomal impairment in brains of FTLD-TDP/GRN patients. Strikingly, saposin D, SCMAS as well as the lysosomal proteins CTSD and LAMP1/2 are all elevated in patients with FTLD-TDP/GRN. Thus, our findings suggest that lysosomal storage disorders and GRN-associated FTLD may share common features

    Opposite microglial activation stages upon loss of PGRN or TREM2 result in reduced cerebral glucose metabolism.

    Get PDF
    Microglia adopt numerous fates with homeostatic microglia (HM) and a microglial neurodegenerative phenotype (MGnD) representing two opposite ends. A number of variants in genes selectively expressed in microglia are associated with an increased risk for neurodegenerative diseases such as Alzheimer&#39;s disease (AD) and frontotemporal lobar degeneration (FTLD). Among these genes are progranulin (GRN) and the triggering receptor expressed on myeloid cells 2 (TREM2). Both cause neurodegeneration by mechanisms involving loss of function. We have now isolated microglia from Grn&minus;/&minus; mice and compared their transcriptomes to those of Trem2&minus;/&minus; mice. Surprisingly, while loss of Trem2 enhances the expression of genes associated with a homeostatic state, microglia derived from Grn&minus;/&minus; mice showed a reciprocal activation of the MGnD molecular signature and suppression of gene characteristic for HM. The opposite mRNA expression profiles are associated with divergent functional phenotypes. Although loss of TREM2 and progranulin resulted in opposite activation states and functional phenotypes of microglia, FDG (fluoro-2-deoxy-d-glucose)-&mu;PET of brain revealed reduced glucose metabolism in both conditions, suggesting that opposite microglial phenotypes result in similar wide spread brain dysfunction

    Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation

    No full text
    Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive up-regulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(−/−) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(−/−) microglia, and mitigates neurodegeneration, behavioral phenotypes and premature mortality in Grn(−/−) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency
    corecore