1,494 research outputs found

    Effect of sulphur and nitrogen fertilization on bread-making quality of wheat (Triticum aestivum L.) varieties under Mediterranean climate conditions

    Get PDF
    Turkey has applied for EU-membership, but still faces problems of lacking quality standards for bread wheat. Studies on the influence of S-fertilization on grain yield and bread-making quality of wheat (Triticum aestivum L.) in the region haven’t been carried out until today. This research was conducted for two growing seasons (2008-2009 and 2009-2010) at Adnan Menderes University Research and Experimental Farm located in the Western Turkey (Aegean region) at 37Âș 44’ N 27Âș 44’ E in order to determine the effects of nitrogen (0, 70, 140, 210 kg ha-1) supplemented with sulphur (0 or 40 kg ha-1) with respect to yield and bread-making quality of the varieties Golia and Sagittario, grown primarily in Western Turkey. S-fertilization had positive effects on grain yield and some quality parameters under Mediterranean conditions; however, signifi cant differencess were rather rare. Particularly the gluten-index and the sedimentation value promoted by S fertilization were among the tested parameters. Therefore, S-fertilization in improving bread-making quality of wheat in the region should not be disregarded. Grain yield and quality could be promoted simultaneously with increasing N-doses

    Spectral Properties of Magnetic Excitations in Cuprate Two-Leg Ladder Systems

    Full text link
    This article summarizes and extends the recent developments in the microscopic modeling of the magnetic excitations in cuprate two-leg ladder systems. The microscopic Hamiltonian comprises dominant Heisenberg exchange terms plus an additional four-spin interaction which is about five times smaller. We give an overview over the relevant energies like the one-triplon dispersion, the energies of two-triplon bound states and the positions of multi-triplon continua and over relevant spectral properties like spectral weights and spectral densities in the parameter regime appropriate for cuprate systems. It is concluded that an almost complete understanding of the magnetic excitations in undoped cuprate ladders has been obtained as measured by inelastic neutron scattering, inelastic light (Raman) scattering and infrared absorption.Comment: 26 pages, 10 figures, review for Mod. Phys. Lett.

    Co-sputtered MoRe thin films for carbon nanotube growth-compatible superconducting coplanar resonators

    Get PDF
    Molybdenum rhenium alloy thin films can exhibit superconductivity up to critical temperatures of Tc=15KT_c=15\mathrm{K}. At the same time, the films are highly stable in the high-temperature methane / hydrogen atmosphere typically required to grow single wall carbon nanotubes. We characterize molybdenum rhenium alloy films deposited via simultaneous sputtering from two sources, with respect to their composition as function of sputter parameters and their electronic dc as well as GHz properties at low temperature. Specific emphasis is placed on the effect of the carbon nanotube growth conditions on the film. Superconducting coplanar waveguide resonators are defined lithographically; we demonstrate that the resonators remain functional when undergoing nanotube growth conditions, and characterize their properties as function of temperature. This paves the way for ultra-clean nanotube devices grown in situ onto superconducting coplanar waveguide circuit elements.Comment: 8 pages, 6 figure

    Asymptotic Symmetries of String Theory on AdS3 X S3 with Ramond-Ramond Fluxes

    Full text link
    String theory on AdS3 space-times with boundary conditions that allow for black hole states has global asymptotic symmetries which include an infinite dimensional conformal algebra. Using the conformal current algebra for sigma-models on PSU(1,1|2), we explicitly construct the R-symmetry and Virasoro charges in the worldsheet theory describing string theory on AdS3 X S3 with Ramond-Ramond fluxes. We also indicate how to construct the full boundary superconformal algebra. The boundary superconformal algebra plays an important role in classifying the full spectrum of string theory on AdS3 with Ramond-Ramond fluxes, and in the microscopic entropy counting in D1-D5 systems.Comment: 30 page

    Palynological records of the Permian Ecca Group (South Africa): Utilizing climatic icehouse-greenhouse signals for cross basin correlations

    Get PDF
    © 2014 Elsevier B.V. The Permian formations of the South African Karoo Basin play a crucial role in understanding Gondwana's climate history during this time of major global changes. In this paper we present two data sets, one from the coal-bearing Vryheid Formation (Witbank Basin) and one from the Whitehill and Upper Prince Albert formations of the DP 1/78 core (NE Karoo).Our main goal was to study the vegetation changes during this period of global warming and test if the climatic signals could be used to correlate the basinal Ecca group facies with the fluvio-deltaic coal-bearing strata of the Witbank Basin. The palynological record of the No. 2 Coal Seam of the Vryheid Formation indicates a cold climate, fern wetland community, characteristic of lowland alluvial plains, and an upland conifer community in the lower part of the coal seam. Up section, these communities are replaced by a cool-temperate cycad-like lowland vegetation and gymnospermous upland flora. The data set of the DP 1/78 core is interpreted to represent a cool to warm temperate climate represented by a high amount of Gangamopteris and Glossopteris elements.Both data sets are very different in their composition, which can be explained by the differences in depositional environment; however, our findings reveal a different age of the studied assemblages and thus also suggest that both data sets represent different stages in the transition from icehouse to greenhouse during Permian times. As the stratigraphic correlation between the Main Karroo Basin and the peripheral basins is still under discussion, this paper provides new data to underpin the stratigraphic placement of the Whitehill Formation relative to the coal-bearing Vryheid Formation

    Excitations in one-dimensional S=1/2 quantum antiferromagnets

    Full text link
    The transition from dimerized to uniform phases is studied in terms of spectral weights for spin chains using continuous unitary transformations (CUTs). The spectral weights in the S=1 channel are computed perturbatively around the limit of strong dimerization. We find that the spectral weight is concentrated mainly in the subspaces with a small number of elementary triplets (triplons), even for vanishing dimerization. So, besides spinons, triplons may be used as elementary excitations in spin chains. We conclude that there is no necessity to use fractional excitations in low-dimensional, undoped or doped quantum antiferromagnets.Comment: 4 pages, 1 figure include

    Conformal Current Algebra in Two Dimensions

    Full text link
    We construct a non-chiral current algebra in two dimensions consistent with conformal invariance. We show that the conformal current algebra is realized in non-linear sigma-models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed using two distinct methods. First we exploit special algebraic properties of supergroups to compute the exact two- and three-point functions of the currents and from them we infer the current algebra. The algebra is also calculated by using conformal perturbation theory about the Wess-Zumino-Witten point and resumming the perturbation series. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting operators that is closed under the action of the Kac-Moody generators. The supergroup models that we consider include models with applications to statistical mechanics, condensed matter and string theory. In particular, our results may help to systematically solve and clarify the quantum integrability of PSU(n|n) models and their cosets, which appear prominently in string worldsheet models on anti-deSitter spaces.Comment: 33 pages, minor correction

    Unveiling Soft Gamma-Ray Repeaters with INTEGRAL

    Get PDF
    Thanks to INTEGRAL's long exposures of the Galactic Plane, the two brightest Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and studied in detail for the first time at hard-X/soft gamma rays. This has produced a wealth of new scientific results, which we will review here. Since SGR 1806-20 was particularly active during the last two years, more than 300 short bursts have been observed with INTEGRAL. and their characteristics have been studied with unprecedented sensitivity in the 15-200 keV range. A hardness-intensity anticorrelation within the bursts has been discovered and the overall Number-Intensity distribution of the bursts has been determined. In addition, a particularly active state, during which ~100 bursts were emitted in ~10 minutes, has been observed on October 5 2004, indicating that the source activity was rapidly increasing. This eventually led to the Giant Flare of December 27th 2004, for which a possible soft gamma-ray (>80 keV) early afterglow has been detected. The deep observations allowed us to discover the persistent emission in hard X-rays (20-150 keV) from 1806-20 and 1900+14, the latter being in a quiescent state, and to directly compare the spectral characteristics of all Magnetars (two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL.Comment: 8 pages, 7 figures, Presented at the conference "Isolated Neutron Stars: from the Surface to the Interior", London, UK, 24-28 April 200

    Observation of a New Type of Low Frequency Waves at Comet 67P/Churyumov-Gerasimenko

    Get PDF
    We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low activity state. Quasi-coherent, large-amplitude (ÎŽB/B∌1\delta B/B \sim 1), compressional magnetic field oscillations at ∌\sim 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied comet-interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pick-up ion driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.Comment: 6 pages, 3 Figure
    • 

    corecore