Molybdenum rhenium alloy thin films can exhibit superconductivity up to
critical temperatures of Tc=15K. At the same time, the films are
highly stable in the high-temperature methane / hydrogen atmosphere typically
required to grow single wall carbon nanotubes. We characterize molybdenum
rhenium alloy films deposited via simultaneous sputtering from two sources,
with respect to their composition as function of sputter parameters and their
electronic dc as well as GHz properties at low temperature. Specific emphasis
is placed on the effect of the carbon nanotube growth conditions on the film.
Superconducting coplanar waveguide resonators are defined lithographically; we
demonstrate that the resonators remain functional when undergoing nanotube
growth conditions, and characterize their properties as function of
temperature. This paves the way for ultra-clean nanotube devices grown in situ
onto superconducting coplanar waveguide circuit elements.Comment: 8 pages, 6 figure