6 research outputs found

    Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession : First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations

    Get PDF
    Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes-summarized by the term ocean acidification (OA)-could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (similar to 380 mu atm pCO(2)), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (mu 760 mu atm pCO(2)). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a "long-term mesocosm" approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.Peer reviewe

    Oceanic acidification - Hatching rates of wild and farmed atlantic cod (Gadus morhua)

    No full text
    Ocean acidification (OA) has been shown to affect larval development in fish but with little change in egg fertilization and hatching success when gametes alone are incubated at higher CO2 level. Little is known of the effects of OA on adult fish reproduction. In the present study we planned to examine the influence of OA on reproduction itself in the adult atlantic cod in both farmed and wild fish. In future OA scenarios it is clear that all life stages will be exposed to higher CO2 levels. It is therefore logical to look at responses of fecundity and gonad development in these stages before examining egg and larval survival from such parents. The wider significance of this project is that the influence of OA at the broodstock level is unknown within fish species and the NOFIMA infrastructure access provides a unique opportunity to study this threat to the cod populations of the future. Through pre-incubation of parents at high and low CO2 levels it has been possible to study trans-generation effects with eggs and sperm from fish with and without pre-exposure to carbon dioxide (OA

    Effects of parental acclimation and energy limitation in response to high CO2 exposure in Atlantic cod

    No full text
    Ocean acidification (OA), the dissolution of excess anthropogenic carbon dioxide in ocean waters, is a potential stressor to many marine fish species. Whether species have the potential to acclimate and adapt to changes in the seawater carbonate chemistry is still largely unanswered. Simulation experiments across several generations are challenging for large commercially exploited species because of their long generation times. For Atlantic cod (Gadus morhua), we present first data on the effects of parental acclimation to elevated aquatic CO2 on larval survival, a fundamental parameter determining population recruitment. The parental generation in this study was exposed to either ambient or elevated aquatic CO2 levels simulating end-of-century OA levels (~1100 µatm CO2) for six weeks prior to spawning. Upon fully reciprocal exposure of the F1 generation, we quantified larval survival, combined with two larval feeding regimes in order to investigate the potential effect of energy limitation. We found a significant reduction in larval survival at elevated CO2 that was partly compensated by parental acclimation to the same CO2 exposure. Such compensation was only observed in the treatment with high food availability. This complex 3-way interaction indicates that surplus metabolic resources need to be available to allow a transgenerational alleviation response to ocean acidification
    corecore