41 research outputs found

    Concomitant Duplications of Opioid Peptide and Receptor Genes before the Origin of Jawed Vertebrates

    Get PDF
    Background: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors an

    Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ever since the theory about two rounds of genome duplication (2R) in the vertebrate lineage was proposed, the Hox gene clusters have served as the prime example of quadruplicate paralogy in mammalian genomes. In teleost fishes, the observation of additional Hox clusters absent in other vertebrate lineages suggested a third tetraploidization (3R). Because the Hox clusters occupy a quite limited part of each chromosome, and are special in having position-dependent regulation within the multi-gene cluster, studies of syntenic gene families are needed to determine the extent of the duplicated chromosome segments. We have analyzed in detail 14 gene families that are syntenic with the Hox clusters to see if their phylogenies are compatible with the Hox duplications and the 2R/3R scenario. Our starting point was the gene family for the NPY family of peptides located near the Hox clusters in the pufferfish <it>Takifugu rubripes</it>, the zebrafish <it>Danio rerio</it>, and human.</p> <p>Results</p> <p>Seven of the gene families have members on at least three of the human Hox chromosomes and two families are present on all four. Using both neighbor-joining and quartet-puzzling maximum likelihood methods we found that 13 families have a phylogeny that supports duplications coinciding with the Hox cluster duplications. One additional family also has a topology consistent with 2R but due to lack of urochordate or cephalocordate sequences the time window when these duplications could have occurred is wider. All but two gene families also show teleost-specific duplicates.</p> <p>Conclusion</p> <p>Based on this analysis we conclude that the Hox cluster duplications involved a large number of adjacent gene families, supporting expansion of these families in the 2R, as well as in the teleost 3R tetraploidization. The gene duplicates presumably provided raw material in early vertebrate evolution for neofunctionalization and subfunctionalization.</p

    Neuropeptide Y-family peptides and receptors in the elephant shark, Callorhinchus milii confirm gene duplications before the gnathostome radiation

    Get PDF
    AbstractWe describe here the repertoire of neuropeptide Y (NPY) peptides and receptors in the elephant shark Callorhinchus milii, belonging to the chondrichthyans that diverged from the rest of the gnathostome (jawed vertebrate) lineage about 450 million years ago and the first chondrichthyan with a genome project. We have identified two peptide genes that are orthologous to NPY and PYY (peptide YY) in other vertebrates, and seven receptor genes orthologous to the Y1, Y2, Y4, Y5, Y6, Y7 and Y8 subtypes found in tetrapods and teleost fishes. The repertoire of peptides and receptors seems to reflect the ancestral configuration in the predecessor of all gnathostomes, whereas other lineages such as mammals and teleosts have lost one or more receptor genes or have acquired 1–2 additional peptide genes. Both the peptides and receptors showed broad and overlapping mRNA expression which may explain why some receptor gene losses could take place in some lineages, but leaves open the question why all the known ancestral receptors have been retained in the elephant shark

    Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce

    Get PDF
    The health, growth, and fitness of boreal forest trees are impacted and improved by their associated microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from host samples. In contrast, phylogenetic marker gene amplicon sequencing data are used to assess taxonomic composition and community structure of the microbiome. Few studies have considered how much of this structural and taxonomic information is included in transcriptomic data from matched samples. Here, we described fungal communities using both host-derived RNA-Seq and fungal ITS1 DNA amplicon sequencing to compare the outcomes between the methods. We used a panel of root and needle samples from the coniferous tree species Picea abies (Norway spruce) growing in untreated (nutrient-deficient) and nutrient-enriched plots at the Flakaliden forest research site in boreal northern Sweden. We show that the relationship between samples and alpha and beta diversity indicated by the fungal transcriptome is in agreement with that generated by the ITS data, while also identifying a lack of taxonomic overlap due to limitations imposed by current database coverage. Furthermore, we demonstrate how metatranscriptomics data additionally provide biologically informative functional insights. At the community level, there were changes in starch and sucrose metabolism, biosynthesis of amino acids, and pentose and glucuronate interconversions, while processing of organic macromolecules, including aromatic and heterocyclic compounds, was enriched in transcripts assigned to the genus Cortinarius.IMPORTANCE A deeper understanding of microbial communities associated with plants is revealing their importance for plant health and productivity. RNA extracted from plant field samples represents the host and other organisms present. Typically, gene expression studies focus on the plant component or, in a limited number of studies, expression in one or more associated organisms. However, metatranscriptomic data are rarely used for taxonomic profiling, which is currently performed using amplicon approaches. We created an assembly-based, reproducible, and hardware-agnostic workflow to taxonomically and functionally annotate fungal RNA-Seq data obtained from Norway spruce roots, which we compared to matching ITS amplicon sequencing data. While we identified some limitations and caveats, we show that functional, taxonomic, and compositional insights can all be obtained from RNA-Seq data. These findings highlight the potential of metatranscriptomics to advance our understanding of interaction, response, and effect between host plants and their associated microbial communities

    An Improved Canine Genome and a Comprehensive Catalogue of Coding Genes and Non-Coding Transcripts

    Get PDF
    The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog ∌175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional ∌3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to ∌20,700 high-confidence protein coding loci, we found ∌4,600 antisense transcripts overlapping exons of protein coding genes, ∌7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and ∌11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts

    Science communication on Twitter : Ananalysis of vocabulary and content

    No full text
    Twitter is one platform where scientists can communicate their research results, both among each other and to a wider audience. This master thesis investigates to what extent, and by which means, tweets with scientific content invite the general public to engage in the topics. The four different topics analysed in this study were: C.elegans/Neuromyelitis, Staphylococcus, mRNA expression and Species diversity/Phylogenetic tree. Several methods were used to analyse these datasets, such as identification of jargon, content analysis and word frequencies, analysed within the metadiscourse framework stance and engagement. All in order to detect any intentions of communication outside the academic circle. It was possible to detect communicative and descriptive content in two of the topics, mRNA expression and Species diversity/Phylogenetic tree. The vocabulary was analysed in both of these topics, detecting a high frequency of reader-mentions and markers for novelty, something that has been seen in other kinds of media producing popular science. However, for most tweets with scientific content the main receivers seem to be other researchers in the same fields. Tweets containing links to scientific articles predominantly contain only the title of the article. One prominent aspect of Twitter is its changing nature. This can be seen in this study where tweets from the topics Staphylococcus and Species diversity/Phylogenetic tree had links to news media. If the datasets were collected today, tweets from the topic mRNA expression would probably also display this pattern

    Evolution of the Neuropeptide Y and Opioid Systems and their Genomic Regions

    No full text
    Two whole genome duplications (2R) occurred early in vertebrate evolution. By using combined information from phylogenetic analyses and chromosomal location of genes, this thesis delineates the evolutionary history of two receptor-ligand systems that expanded by these large scale events. A third whole genome duplication (3R) took place in the teleost fish lineage and has also contributed to the complexity of the gene families. New members of neuropeptide Y (NPY) peptide and receptor families were generated in 2R and 3R. Evolutionary comparisons show that the ancestral teleost fish had four peptides; subsequently, differential losses of the peptide genes occurred. In zebrafish the peptides and receptors display differences in tissue distribution and have  evolved binding preferences. In the frog Silurana tropicalis three peptides and six receptors werev identified, also displaying some differences in tissue distribution and receptor-ligand preferences. The findings in these experimental animals highlight both evolutionary conservation and lineage-specific features of the NPY system. The opioid system consists of four receptors and several peptides originating from four precursors. These results show that the receptor family was formed in 2R and 3R and that 2R together with one local duplication gave rise to the peptide family. The ancestral receptor and peptide genes were located on the same chromosome, suggesting coevolution. The Hox gene clusters, important in early development, provided the first strong evidence for 2R. Several neighboring gene families were analyzed and found to have expanded in 2R and 3R. In depth analyses of insulin-like growth factor binding protein (IGFBP) and voltage-gated sodium channel (SCN) gene families illustrates the importance of local duplications in combination with whole genome duplications in the formation of gene families. These findings provide additional strong evidence for two genome duplications in early vertebrate evolution and show that these events generated many new genes that could evolve new or more specialized functions

    Evolution of the Neuropeptide Y and Opioid Systems and their Genomic Regions

    No full text
    Two whole genome duplications (2R) occurred early in vertebrate evolution. By using combined information from phylogenetic analyses and chromosomal location of genes, this thesis delineates the evolutionary history of two receptor-ligand systems that expanded by these large scale events. A third whole genome duplication (3R) took place in the teleost fish lineage and has also contributed to the complexity of the gene families. New members of neuropeptide Y (NPY) peptide and receptor families were generated in 2R and 3R. Evolutionary comparisons show that the ancestral teleost fish had four peptides; subsequently, differential losses of the peptide genes occurred. In zebrafish the peptides and receptors display differences in tissue distribution and have  evolved binding preferences. In the frog Silurana tropicalis three peptides and six receptors werev identified, also displaying some differences in tissue distribution and receptor-ligand preferences. The findings in these experimental animals highlight both evolutionary conservation and lineage-specific features of the NPY system. The opioid system consists of four receptors and several peptides originating from four precursors. These results show that the receptor family was formed in 2R and 3R and that 2R together with one local duplication gave rise to the peptide family. The ancestral receptor and peptide genes were located on the same chromosome, suggesting coevolution. The Hox gene clusters, important in early development, provided the first strong evidence for 2R. Several neighboring gene families were analyzed and found to have expanded in 2R and 3R. In depth analyses of insulin-like growth factor binding protein (IGFBP) and voltage-gated sodium channel (SCN) gene families illustrates the importance of local duplications in combination with whole genome duplications in the formation of gene families. These findings provide additional strong evidence for two genome duplications in early vertebrate evolution and show that these events generated many new genes that could evolve new or more specialized functions

    Evolution of the Neuropeptide Y and Opioid Systems and their Genomic Regions

    No full text
    Two whole genome duplications (2R) occurred early in vertebrate evolution. By using combined information from phylogenetic analyses and chromosomal location of genes, this thesis delineates the evolutionary history of two receptor-ligand systems that expanded by these large scale events. A third whole genome duplication (3R) took place in the teleost fish lineage and has also contributed to the complexity of the gene families. New members of neuropeptide Y (NPY) peptide and receptor families were generated in 2R and 3R. Evolutionary comparisons show that the ancestral teleost fish had four peptides; subsequently, differential losses of the peptide genes occurred. In zebrafish the peptides and receptors display differences in tissue distribution and have  evolved binding preferences. In the frog Silurana tropicalis three peptides and six receptors werev identified, also displaying some differences in tissue distribution and receptor-ligand preferences. The findings in these experimental animals highlight both evolutionary conservation and lineage-specific features of the NPY system. The opioid system consists of four receptors and several peptides originating from four precursors. These results show that the receptor family was formed in 2R and 3R and that 2R together with one local duplication gave rise to the peptide family. The ancestral receptor and peptide genes were located on the same chromosome, suggesting coevolution. The Hox gene clusters, important in early development, provided the first strong evidence for 2R. Several neighboring gene families were analyzed and found to have expanded in 2R and 3R. In depth analyses of insulin-like growth factor binding protein (IGFBP) and voltage-gated sodium channel (SCN) gene families illustrates the importance of local duplications in combination with whole genome duplications in the formation of gene families. These findings provide additional strong evidence for two genome duplications in early vertebrate evolution and show that these events generated many new genes that could evolve new or more specialized functions
    corecore