49 research outputs found

    Impacts of global change on water-related sectors and society in a trans-boundary central European river basin – Part 1: Project framework and impacts on agriculture

    Get PDF
    Central Europe, the focus region of this study, is a region in transition, climatically from maritime to continental and politically from formerly more planning-oriented to more market-oriented management regimes, and in terms of climate change from regions of increasing precipitation in the west and north of Europe to regions of decreasing precipitation in central and southern Europe. The Elbe basin, a trans-boundary catchment flowing from the Czech Republic through Germany into the North Sea, was selected to investigate the possible impacts of global change on crop yields and water resources in this region. For technical reasons, the paper has been split into two parts, the first showing the overall model concept, the model set-up for the agricultural sector, and first results linking eco-hydrological and agro-economic tools for the German part of the basin. The second part describes the model set-up for simulating water supply and demand linking eco-hydrological and water management tools for the entire basin including the Czech part

    Tillage erosion as an important driver of in‐field biomass patterns in an intensively used hummocky landscape

    Get PDF
    Tillage erosion causes substantial soil redistribution that can exceed water erosion especially in hummocky landscapes under highly mechanized large field agriculture. Consequently, truncated soil profiles can be found on hill shoulders and top slopes, whereas colluvial material is accumulated at footslopes, in depressions, and along downslope field borders. We tested the hypothesis that soil erosion substantially affects in-field patterns of the enhanced vegetation index (EVI) of different crop types on landscape scale. The interrelation between the EVI (RAPIDEYE satellite data; 5 m spatial resolution) as a proxy for crop biomass and modeled total soil erosion (tillage and water erosion modeled using SPEROS-C) was analyzed for the Quillow catchment (size: 196 km2) in Northeast Germany in a wet versus normal year for four crop types (winter wheat, maize, winter rapeseed, winter barley). Our findings clearly indicate that eroded areas had the lowest EVI values, while the highest EVI values were found in depositional areas. The differences in the EVI between erosional and depositional sites are more pronounced in the analyzed normal year. The net effect of total erosion on the EVI compared to areas without pronounced erosion or deposition ranged from −10.2% for maize in the normal year to +3.7% for winter barley in the wet year. Tillage erosion has been identified as an important driver of soil degradation affecting in-field crop biomass patterns in a hummocky ground moraine landscape. While soil erosion estimates are to be made, more attention should be given toward tillage erosion.ISSN:1085-3278ISSN:1099-145

    Water fluxes and diffuse nitrate pollution at the river basin scale: Interfaces for the coupling of agroeconomical models with hydrological approaches

    No full text
    An integrated model system has been developed to estimate the impact of nitrogen reduction measures on the nitrogen load in groundwater and in river catchment areas. The focus lies on an area-wide, regionally differentiated, consistent link-up between the indicator "nitrogen balance surplus" and nitrogen charges into surface waters. As a starting point of the analysis actual nitrogen surpluses in the soil were quantified using the agro-economic RAUMIS-model, which considers the most important N-inputs to the soil and N-removals from the soil through crop harvest. The most important pathways for diffuse nitrogen inputs into river systems are modelled with the water balance model GROWA. Additionally, the time-dependent nitrogen degradation along the nitrogen pathways in soil and groundwater are modelled using the WEKU-model. The two selected river basins in Germany cover a variety of landscape units with different hydrological, hydrogeological and socio-economic characteristics. The results indicate a wide range of annual nitrogen surpluses for the rural areas between than 10 kg N ha(-1).a(-1) and 200 kg N ha(-1).a(-1) or more, depending on the type and intensity of farming. The level of nitrogen inputs into the surface waters is reduced because of degradation processes during transport in soil and groundwater. Policy impact analyses for a nitrogen tax and a limitation of the livestock density stress the importance of regionally adjusted measures
    corecore