45 research outputs found

    Protein-polymer nano-machines. Towards synthetic control of biological processes

    Get PDF
    The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M) enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams [1,2]. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales [3]. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme) with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function [4]

    Engineering butylglyceryl-modified polysaccharides towards nanomedicines for brain drug delivery

    Get PDF
    Colloidal systems prepared from carbohydrates are subject of intense research due to their potential to enhance drug permeability through biological membranes, however their characteristics and performance are never compared directly. Here we report the results of a comparative investigation of a series of butylglyceryl-modified polysaccharides (chitosan, guar gum, and pullulan) that were formulated into nanoparticles and loaded with a range of model actives (Doxorubicin, Rhodamine B, Angiotensin II). Butylglyceryl-modified guar gum and corresponding pullulan nanocarriers were more stable at physiological pH compared to those obtained from modified chitosan, and studies of the in-vitro interactions with mouse brain endothelial cells (bEnd3) indicated an increased biological membrane permeability and lack of toxicity at application-relevant concentrations. No significant haemolytic effect was observed, and confocal microscopy and flow cytometry studies confirmed the efficient cellular uptake and cytoplasmic localisation of NPs. Most promising characteristics for brain drug delivery applications were demonstrated by butylglyceryl pullulan nanocarriers

    Specific Dystrophins Selectively Associate with Inhibitory and Excitatory Synapses of the Mouse Cerebellum and their Loss Alters Expression of P2X7 Purinoceptors and Pro-Inflammatory Mediators

    Get PDF
    open access articleDuchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system

    Butylglyceryl pectin nanoparticles: synthesis, formulation and characterization

    Get PDF
    Pectin is a polysaccharide with very good gel forming properties that traditionally has found important applications in foods and pharmaceutical industries. Although less studied, chemical modifications of pectin leading to a decrease in its hydrophilicity can be useful for the development of novel drug carriers. To this aim, butylglyceryl pectins (P-OX4) were synthesized via functionalization with n-butylglycidyl ether and subsequently formed into nanoparticles. Chromatographic, spectroscopic, and thermal analytical methods were employed to characterize the novel butylglyceryl pectins (P-OX4) obtained, prior to their formulation into nanoparticles via nanoprecipitation. Nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopy confirmed a degree of modification in these materials in the range 10.4−13.6%, and thermal stability studies indicated an increase in both the thermal decomposition onset and glass transition temperature values (compared to those of the original pectin). An increase in the molecular weight and a decrease in the viscosity of P-OX4, when compared to the starting material, were also observed. The resulting nanoformulations were investigated in terms of particle morphology, size and stability, and it was found that particles were roughly spherical, with their size below 300 nm, and a negative zeta potential (−20 to −26 mV, indicating good stability). Having demonstrated the ability to load Doxorubicin at the level of 10%, their potential in drug delivery applications warrants further investigations

    Diversité et origine génétique des espèces de la sous famille des Aurantioideae et décryptage des structures interspécifiques des génomes des agrumes modernes

    Full text link
    L'étude de l'espaceur intergénique tmL-tmF chez les espèces tunisiennes du genre Citrus montre la présence d'une seule copie du pseudogène tmF chez toutes les variétés analysées. Les valeurs positives et non significatives des tests de neutralité plaident en faveur d'un modèle d'évolution neutre et supportent l'hypothèse d'un scénario démographique stable. Nos résultats montrent clairement la contribution des pools génétiques de C. reticulata et C. maxima dans le développement des espèces secondaires tunisiennes. L'analyse basée sur les séquences nucléotidiques de huit régions génomiques chloroplastiques de 79 variétés de la sous famille des Aurantioideae révèle, via les marqueurs SNPs, une différenciation taxonomique au niveau des tribus, des soustribus, des genres et des espèces. 166 SNPs diagnostiques des 54 clades analysés ont été identifiés suivis d'une sélection de 40 KASPars. L'application de ces marqueurs chez 108 variétés montre un haut taux de transférabilité au sein de la sous famille des Aurantioideae et une cohérence avec les analyses génétiques antérieures du génome chloroplastique 21 clés marqueurs de clade catégoriquement diagnostique de 19 clades ont été identifiées. L'analyse GBS des 55 variétés d'agrumes par séquençage ILLUMINA H1SEQ2000 s'avère efficace dans d'identification des polymorphismes diagnostiques (12564 SNPs/lnDels) de la différenciation C. reticulata/C. maxima couvrant l'ensemble du génome nécessaire au déchiffrage de l'origine phylogénomique tout au long des neuf chromosomes des 55 variétés. L'approche adoptée confirme les analyses récentes basées sur des données de séquence de génome complet pour la clémentine, l'orange douce et amère et la mandarine 'Ponkan'. La technique GBS couplée à la détection des points polymorphes diagnostiques s'avère très efficace dans le décryptage des caryotypes phylogénomiques des variétés qui dérivent d'une mosaïque de deux espèces ancestrales. Le mélange C. reticulata/C. maxima doit être l'élément majeur de la variabilité phénotypique révélée élevée de ces ressources. (Résumé d'auteur

    Myogenesis modelled by human pluripotent stem cells uncovers Duchenne muscular dystrophy phenotypes prior to skeletal muscle commitment

    Get PDF
    Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5,000 male births. Symptoms appear in early childhood, with a diagnosis made around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise - even asymptomatically - is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. In this study, we have used human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis, and compared their differentiation dynamics to healthy control cells by a comprehensive multi-omics analysis. Transcriptome and miRnome comparisons combined with protein analyses at 7 time points demonstrate that hiPSC differentiation 1) mimics described DMD phenotypes at the differentiation endpoint; and 2) homogeneously and robustly recapitulates key developmental steps - mesoderm, somite, skeletal muscle - which offers the possibility to explore dystrophin functions and find earlier disease biomarkers. Starting at the somite stage, mitochondrial gene dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of skeletal muscle cells that starts early during myogenesis. In sum, our data strongly argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin functions during muscle development

    Myogenesis modelled by human pluripotent stem cells uncovers Duchenne muscular dystrophy phenotypes prior to skeletal muscle commitment

    Get PDF
    Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5,000 male births. Symptoms appear in early childhood, with a diagnosis made around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise - even asymptomatically - is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. In this study, we have used human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis, and compared their differentiation dynamics to healthy control cells by a comprehensive multi-omics analysis. Transcriptome and miRnome comparisons combined with protein analyses at 7 time points demonstrate that hiPSC differentiation 1) mimics described DMD phenotypes at the differentiation endpoint; and 2) homogeneously and robustly recapitulates key developmental steps - mesoderm, somite, skeletal muscle - which offers the possibility to explore dystrophin functions and find earlier disease biomarkers. Starting at the somite stage, mitochondrial gene dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of skeletal muscle cells that starts early during myogenesis. In sum, our data strongly argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin functions during muscle development

    Myogenesis modelled by human pluripotent stem cells: a multi‐omic study of Duchenne myopathy early onset

    Get PDF
    International audienceBackground Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5000 male births. Symptoms appear in early childhood, with a diagnosis made mostly around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise-even asymptomatically-is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. Methods We have used both human tissue-derived myoblasts and human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis and compared their differentiation dynamics with that of healthy control cells by a comprehensive multi-omic analysis at seven time points. Results were strengthened with the analysis of isogenic CRISPR-edited human embryonic stem cells and through comparisons against published transcriptomic and proteomic datasets from human DMD muscles. The study was completed with DMD knockdown/rescue experiments in hiPSC-derived skeletal muscle progenitor cells and adenosine triphosphate measurement in hiPSC-derived myotubes. Results Transcriptome and miRnome comparisons combined with protein analyses demonstrated that hiPSC differentiation (i) leads to embryonic/foetal myotubes that mimic described DMD phenotypes at the differentiation endpoint and (ii) homogeneously and robustly recapitulates key developmental steps-mesoderm, somite, and skeletal muscle. Starting at the somite stage, DMD dysregulations concerned almost 10% of the transcriptome. These include mitochondrial genes whose dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of DMD skeletal muscle cells that begins early during myogenesis. All the omics data are available online for exploration through a graphical interface at https://muscle-dmd.omics.ovh/. Conclusions Our data argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin roles during muscle development. This hiPSC model of skeletal muscle differentiation offers the possibility to explore these functions as well as find earlier DMD biomarkers and therapeutic targets
    corecore