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ABSTRACT 19 

Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an 20 

incidence of approximately 1/5,000 male births. Symptoms appear in early childhood, with a diagnosis made 21 

around 4 years old, a time where the amount of muscle damage is already significant, preventing early 22 

therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the 23 

precise moment at which disease phenotypes arise – even asymptomatically – is still unknown. Thus, there is a 24 

critical need to better define DMD onset as well as its first manifestations, which could help identify early 25 

disease biomarkers and novel therapeutic targets. 26 

In this study, we have used human induced pluripotent stem cells (hiPSCs) from DMD patients to model 27 

skeletal myogenesis, and compared their differentiation dynamics to that of healthy control cells by a 28 

comprehensive multi-omic analysis. Transcriptome and miRnome comparisons combined with protein 29 

analyses at 7 time points demonstrated that hiPSC differentiation 1) mimics described DMD phenotypes at the 30 

differentiation endpoint; and 2) homogeneously and robustly recapitulates key developmental steps - 31 

mesoderm, somite, skeletal muscle - which offers the possibility to explore dystrophin functions and find 32 

earlier disease biomarkers.  33 

Starting at the somite stage, mitochondrial gene dysregulations escalate during differentiation. We also 34 

describe fibrosis as an intrinsic feature of skeletal muscle cells that starts early during myogenesis. In sum, our 35 

data strongly argue for an early developmental manifestation of DMD whose onset is triggered before the 36 

entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin 37 

functions during muscle development.   38 
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INTRODUCTION 39 

Duchenne muscular dystrophy (DMD) is a rare genetic disease, but it is the most common form of myopathy 40 

affecting approximately one in 5,000 male births and very rarely female. In this recessive X-linked monogenic 41 

disorder, mutations in the DMD gene lead to the loss of functional dystrophin protein, resulting in a 42 

progressive - yet severe - muscle wasting phenotype (1). In patients, symptoms usually appear in early 43 

childhood (2-5 years old) and worsen with age, imposing the use of wheelchair before 15 and leading to 44 

premature death by cardiac and/or respiratory failure(s) mostly around 30 years of age (2).  45 

At the age of diagnosis (around 4 years old), muscles of DMD patients have already suffered from the 46 

pathology (3,4). Several reviews pointed out the limitations of current disease biomarkers, which fail to detect 47 

the development of DMD specifically and at an early age (5,6). Meanwhile, no treatment is available to stop 48 

this degenerative disease yet. Developing therapies aim at restoring the expression of dystrophin in muscle 49 

cells but, so far, the level stays too low to be beneficial to patients (7). The absence of both reliable biomarkers 50 

and effective therapies stress the need of better defining the first steps of DMD in humans to be able to 51 

increase diagnosis sensitivity and, therefore, improve patient management by accelerating their access to 52 

better healthcare as well as develop alternative therapeutic approaches by finding targets that compensate 53 

the lack of dystrophin and complement current attempts at restoring its expression (8).  54 

In 2007, a seminal publication reported that the gene expression profile of muscles from asymptomatic DMD 55 

children younger than 2 years old is already distinguishable from healthy muscles, suggesting that DMD 56 

molecular dysregulations appear before disease symptomatic manifestations (4). Evidence obtained in 57 

multiple animal models, such as neonatal GRMD dogs (9), DMD zebrafish (10) and mdx mouse embryos (11), as 58 

well as in human foetuses (12–14) even suggest that DMD starts before birth, during prenatal development. 59 

Our team recently identified the embryonic dystrophin isoform Dp412e expressed in early mesoderm-60 

committed cells (15), another indication that DMD can start in utero. Further exploring DMD onset in human 61 

foetuses is extremely challenging for obvious ethical and practical reasons. A way to overcome these issues is 62 

to develop a human DMD model in vitro, recapitulating embryonic development from human pluripotent stem 63 

cells to skeletal muscle lineage. 64 
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To our knowledge, none of the existing human DMD in vitro models, either based on tissue-derived myoblasts 65 

(16) or on the differentiation of induced pluripotent stem cells (17–21), have been used for studying DMD 66 

during the ontogeny of the skeletal muscle lineage. Moreover, original protocols for in vitro myogenesis from 67 

human pluripotent stem cells (reviewed in (22)) use transgene overexpression or/and cell sorting procedures, 68 

and thereby, miss the steps preceding skeletal muscle commitment, e.g. paraxial mesoderm and myotome. 69 

Novel protocols have recently used transgene-free directed differentiation to recapitulate human embryonic 70 

development in a dish, giving theoretical access to the developmental steps (19,23–25). 71 

Using one of these protocols (23), we compared the myogenic differentiation dynamics of healthy and DMD 72 

hiPSCs using a multi-omic approach to identify early disease manifestations in vitro. DMD cells showed marked 73 

transcriptome dysregulations from day 10, before the detection of skeletal muscle regulatory factors at day 17. 74 

Specifically, we identified the dysregulation of mitochondrial genes as one of the earliest detectable 75 

phenotypes. These alterations escalated over the course of muscle specification. In addition, we showed an 76 

early induction of Sonic hedgehog signalling pathway, followed by collagens as well as fibrosis-related genes 77 

suggesting the existence of an intrinsic fibrotic process solely driven by DMD muscle cells. Overall, our data 78 

highlight that human pluripotent stem cells are a suitable cell model to study the ontogeny of skeletal muscle 79 

lineage in both healthy and disease conditions. In the context of DMD, they strongly argue for the existence of 80 

early disease manifestations during somite development.  81 

RESULTS 82 

To establish the early/developmental impact of DMD gene mutations, human induced pluripotent stem cells 83 

(hiPSCs) from three DMD patients and three healthy individuals were generated as described previously (15). 84 

These cells were subjected to a standardised differentiation protocol without utilisation of feeder cells, cell 85 

sorting or gene overexpression resulting in elongated and plurinucleated myotubes within 25 days (23), with 86 

an amplification fold of 2918 ± 480 (mean ± SEM). Skeletal muscle progenitor cells after 10 and 17 days of 87 

differentiation could be cryopreserved (Figure S1A). Whole transcriptome and miRnome profiles were 88 

compared at 7 differentiation time points (tissue-derived myoblasts and myotubes, as well as hiPSC-derived 89 

cells at days 0, 3, 10, 17 and 25) and complemented by TMT proteomics and Western blot analyses (Table S1).  90 
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DMD is initiated prior to the expression of skeletal muscle markers 91 

First, the expression profile of the DMD variants was studied by RT-qPCR in healthy and DMD hiPSCs during the 92 

differentiation process described in Figure S1A. The Dp427m variant, which is normally observed in muscle 93 

cells (26), appeared from day 3 and was increased at day 17, in contrast with Dp412e – the embryonic variant 94 

of dystrophin present in mesoderm cells (15) – which was expressed from day 0, increased at differentiation 95 

day 3 and disappeared from day 10. Therefore, the expression of the DMD locus is initiated in the very first 96 

steps of the differentiation protocol, well before the entry into the skeletal muscle lineage. The ubiquitous 97 

variant Dp71-40 was detected at every time points, in contrast with Dp116 (Schwann cell variant (27)), Dp140 98 

(kidney and foetal brain variant (28)) Dp427p1p2 (Purkinje cell variant (29)), and Dp427c which were either 99 

undetected or expressed at very low levels (Figure S1B). Interestingly, Dp260 (retinal variant (30)) followed a 100 

similar expression pattern than Dp427m. 101 

A strong correlation in the transcriptomic data was observed by mRNA-seq and miRNA-seq between samples 102 

collected at an individual time point, as opposed to samples from two distinct time points. In addition, the 103 

correlation coefficient between samples taken at two successive time points increased as differentiation 104 

progressed (Figure 1A). Differential expression analysis in healthy controls between two successive collection 105 

days (days 3/0, days 10/3, days 17/10, days 25/17) showed that the proportion of regulated genes decreased 106 

from 26 % to 18 % of the whole transcriptome through the course of differentiation (8080 to 5320 mRNAs, 107 

adjusted p-value ≤ 0.01, Figure S2A). These observations demonstrate the robustness of the differentiation 108 

protocol and are in agreement with an early specialisation and a later refinement of the transcriptome as cells 109 

quickly exit pluripotency and become progressively restricted to the skeletal muscle lineage.  110 

To characterise the developmental stages achieved by the cells, the expression of lineage-specific markers 111 

(both mRNAs and miRNAs) was determined at each time point, together with gene ontology enrichment 112 

analyses (Figure 1B-2A, Figure S2B-C, Table S2).  113 

Pluripotency was similarly maintained in healthy and DMD cells at day 0 (Figure 2A, Table S2), as already 114 

shown by our group (15). At day 3, cells lost pluripotency and became paraxial mesoderm cells expressing 115 

marker genes such as PAX3 and PAX7 (11) (Figure 2A, Table S2). Importantly, markers of lateral plate (e.g. 116 

GATA4 (31)) and intermediate mesoderm (e.g. PAX8 (32)) were not upregulated at this stage (Table S2). 117 
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Similarly, earlier markers of primitive streak (e.g. TBX6 (33)), mesendoderm (e.g. MIXL1 (34)), as well as 118 

markers of the other germ layers, endoderm (e.g. SOX17 (35)) and ectoderm (e.g. SOX2 (36)) were either not 119 

expressed, greatly downregulated or expressed at very low levels (Table S2), suggesting cell homogeneity in 120 

the differentiation process. 121 

At that early time point, DMD-associated gene dysregulation represented less than 3 % of the entire 122 

transcriptome (adjusted p-value ≤ 0.05, Figure 2B) but already contained genes important for development 123 

(e.g. MEIS2 (37)) and muscle formation (e.g. ACTA1 (38)). However, mesoderm markers were not significantly 124 

dysregulated, attesting that mesoderm commitment was mostly unimpaired (Figure 2A, Table S2). No increase 125 

in the expression of primitive streak, mesendoderm, endoderm or ectoderm markers was detected, suggesting 126 

no differences in the differentiation process of DMD cells at that stage (Table S2). 127 

In contrast, a sharp increase in the proportion of dysregulated genes appeared at day 10, mostly including 128 

gene downregulations (DMD/Healthy expression ratio ≤ 0.76, adjusted p-value ≤ 0.05). This concerned almost 129 

10 % of the transcriptome at day 10 (against 3 % at day 3) and remained stable from 10 to 12 % (1226 mRNAs) 130 

until day 25 (Figure 2B). At day 10, healthy cells expressed genes typically observed during somitogenesis, such 131 

as PAX3 (39) NR2F2 (40), PTN (41), MET (42), H19 and IGF2 (43) (Table S2). More precisely, their transcriptome 132 

exhibits a mixed profile between dermomyotome (expression of GLI3 (44) and GAS1 (45) but not ZIC3 (46)) and 133 

myotome (expression of MET (47) and EPHA4 (48) but not LBX1 (49)) (Table S2). Neither markers of presomitic 134 

mesoderm cells (e.g. FGF8 (50)) and neural plate cells (FOXD3 (51)), nor markers of sclerotome (e.g. PAX1 (52)) 135 

and dermatome (e.g. EGFL6 (53)) were upregulated (Table S2) in both healthy and DMD cells. In the meantime, 136 

several somite markers were downregulated, including H19, IGF2, MET and SEMA6A (54) (validated at the 137 

protein level for SEMA6A, Figure 2A-S3A, Table S2), while a slight upregulation of chondrocyte markers was 138 

highlighted and confirmed at the protein level for GLI3 (Figure S3B), together with a significant enrichment of 139 

the gene ontology term ‘nervous system development’, suggesting potential lineage bifurcations at day 10 140 

(Figure 2A-S2C, Table S2).  141 

The study of differentiation dynamics presented above highlights that mesoderm commitment is not impaired 142 

by the absence of dystrophin, and shows that DMD onset takes place at the somite cell stage, before the 143 

expression of the skeletal muscle program and especially before the upregulation of Dp427m expression. 144 
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DMD skeletal muscle progenitor cells exhibit specific muscle gene dysregulations  145 

Healthy and DMD cells were in the skeletal muscle compartment at day 17, as evidenced by the expression of 146 

multiple lineage-specific genes, such as transcription factors (e.g. MYOD1 (55)), cell surface markers (e.g. 147 

CDH15 (56)), sarcomere genes (e.g. TNNC2 (57)), dystrophin-associated protein complex (DAPC) genes (e.g. 148 

SGCA (58)), Calcium homeostasis genes (e.g. RYR1 (59)) and muscle-specific miRNAs (myomiR, e.g. MIR1-1 149 

(60)). This was also observed at the protein level for CDH15, TNNC2 and RYR1 (Figure 1B, Table S2). They both 150 

showed an embryonic/foetal phenotype characterised by ERBB3 expression, in contrast with tissue-derived 151 

myoblasts that expressed NGFR (21). Here again, alternative cell lineages were absent or greatly 152 

downregulated, such as tenocytes (e.g. MKX (61)), chondrocytes (e.g. SOX5 (62)), osteoblasts (e.g. SPP1 (63)) 153 

or nephron progenitors (e.g. SALL1 (64)) (Table S2).  154 

Interestingly, DMD cells did not show a significant dysregulation of skeletal muscle transcription factors (Table 155 

S2). However, several myomiRs were found downregulated (e.g. MIR1-1, Figure 2C), together with genes 156 

related to calcium homeostasis (e.g. ATP2A2 (65), at both mRNA and protein level, Figure 2D-E) as well as 157 

members of the DAPC (e.g. SNTA1 (66)) (Table S2). Concerning cell lineages, there was no visible difference 158 

when compared to healthy controls, except an upregulation of markers associated with chondrocytes, which 159 

was confirmed at the protein level for GLI3 (Figure S3C), and a significant enrichment of the gene ontology 160 

term ‘nervous system development’ previously seen at day 10, together with ‘kidney development’ and 161 

‘ossification’ (Figure 2A-S2C, Table S2).  162 

DMD-specific dysregulations were further queried at the protein level using TMT proteomics. 3826 proteins 163 

were detected in the 6 processed samples (3 healthy and 3 DMD, Table S3). Among these list, 185 proteins 164 

(139 + 46) were found significantly dysregulated in DMD and 375 (329 + 46) of the corresponding mRNAs were 165 

previously detected dysregulated in the RNA-seq analysis, the overlap between protein and mRNA identified 166 

dysregulations being 46 (|log2FoldChange| ≥ 0.4 and adjusted p-value ≤ 0.05, Figure S3D-E, Table S4). 167 

Moreover, among the total of 514 genes represented in Figure S3F, 98 were dysregulated alike in both 168 

datasets (56 upregulated + 42 downregulated) against 13 (12 + 1) in the opposite direction (|log2FoldChange| 169 

≥ 0.4, Figure S3F, Table S4) resulting in a Spearman correlation of r = 0.49 and p-value < 0.0001. In this 170 

mRNA/protein comparison, the mRNA experiment was more sensitive than protein experiment and could also 171 

be considered as a good proxy for proteins. 172 
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To better characterise the most direct consequences of the loss of DMD in muscle cells, DMD expression was 173 

knocked-down at day 17 by transient exon skipping using a specific phosphorodiamidate morpholino oligomer 174 

targeting DMD exon 7 (PMO7) in a healthy hiPSC line. Treatment with PMO7 resulted in significant exon 175 

skipping which was correlated with reduced DMD expression up to 94% (Spearman r = -0.88, analysed pairs = 176 

59, p-value < 0.0001, Figure S4A) and reduced dystrophin protein levels (up to 81%, Figure S4B). In parallel, the 177 

expression of specific transcripts was measured by RT-qPCR the 3 following days (Figure S4A): transcripts 178 

coding for MYH3, MYOG and SGCA were significantly downregulated after PMO7 treatment (gene group 1), 179 

while transcripts coding for DES and ITGA7 were not affected (gene group 2). 180 

Therefore, DMD cells efficiently enter the skeletal muscle compartment at day 17, but exhibit dysregulations in 181 

several features typically associated with dystrophic muscles, which could be a consequence of the early 182 

manifestations of DMD detected at day 10. Some of these identified dysregulations were mimicked by 183 

transient DMD knockdown. 184 

hiPSC differentiation leads to embryonic/foetal myotubes that reproduce DMD phenotypes  185 

As previously described (23), both healthy and DMD hiPSC-derived myotubes (day 25) were able to twitch 186 

spontaneously in culture, and fluorescent staining of nuclei and α-actinin confirmed cell fusion and the 187 

formation of striation patterns typical of muscle fibres in vivo (Figure 3A). Western blot analyses on protein 188 

extracts from DMD cells confirmed that dystrophin was either undetectable or slightly expressed (Figure 3B), 189 

as in the corresponding patient muscle biopsies (data not shown). 190 

We selected representative mRNAs and miRNAs and showed that both hiPSC-derived and tissue-derived 191 

myotubes have exited the cell cycle and upregulated genes expressed in skeletal muscles (Figure S5A, Figure 192 

4A, Table S2). This included skeletal muscle myomiRs (MIR1-1, MIR133 and MIR206 (67,68)), transcription 193 

factors involved in skeletal myogenesis including those of the muscle regulatory factor (MRF) family (e.g. 194 

MYOD1 (55), MYOG (69)), specific muscle cell surface markers (e.g. CDH15 (56), ITGA7 (70)) as well as genes 195 

involved in the formation of the DAPC (e.g. SGCA (58), DTNA (71)), sarcomeres (e.g. TNNC2 (57), TNNT3 (72)), 196 

myofibril organisation (e.g. UNC45B (73), NACA (74)) and the triggering of excitation-contraction coupling at 197 

the neuromuscular junction (NMJ, e.g. MUSK (75), DOK7 (76)) (Figure 4A, Table S2).  198 
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Even though global analysis showed that hiPSC-derived myotubes were similar to their tissue-derived 199 

counterparts in term of lineage commitment, they displayed an embryonic/foetal phenotype – as suggested in 200 

progenitors at day 17. This can be illustrated by the expression of the embryonic/foetal myosin heavy/light 201 

chains MYH3 (77), MYH8(78), MYL4 (79) and MYL5 (80) but not the postnatal transcripts MYH1 and MYH2 (81), 202 

which were detected in tissue-derived myotubes. Myotubes derived from hiPSCs had also higher levels of IGF2, 203 

which is downregulated at birth (82), and expressed DLK1, which is known to be extinct in adult muscles (83) 204 

(Figure S5B).  205 

Despite the embryonic/foetal phenotype, hiPSC-derived myotubes showed evidence of terminal 206 

differentiation and cellular maturation. First, their total level of myosin heavy chain proteins was significantly 207 

higher than in tissue-derived myotubes, as confirmed by Western blotting (Figure 3B). RNAs and proteins 208 

involved in DAPC formation (e.g. DMD, SGCA (58) and SGCG (84)), as well as in excitation-contraction coupling 209 

(e.g. RYR1 (59) and CACNA1S / CAV1.1 (85)) were also present at higher levels (Figure 3B-4A). Finally, higher 210 

expression of skeletal muscle transcription factors (e.g. MEF2C (86)), and of multiple genes involved in muscle 211 

contraction (e.g. TNNT3 (72)), NMJ formation (e.g. RAPSN (87)), and creatine metabolism (e.g. CKM (88)) 212 

indicates that hiPSC-derived cells expressed features of fully differentiated muscle cells (Figure 4A). Similar to 213 

previous time points, day 25 cells were negative for markers of alternative muscle lineages, i.e. cardiac 214 

(MIR208a (89), MYL7 (90) and RYR2 (91)) and smooth muscle cells (MYH11 (92), CNN1 (93) and CHRNA3/B2/B4 215 

(94))(Table S2). 216 

In DMD cells, unbiased mRNA-seq analysis highlighted striking transcriptome dysregulations with 3,578 217 

differentially expressed genes in hiPSC-derived myotubes including well-known muscle genes. There was a 218 

global trend towards downregulation of muscle transcription factors, which was only significant for MEF2A and 219 

MEF2D in hiPSC-derived myotubes and EYA4 and MYOD1 in tissue-derived myotubes (Figure S5C). In addition, 220 

myomiRs previously associated with muscle dystrophy (dystromiRs, e.g. MIR1-1 (60), Figure 2C) were found 221 

downregulated (Table S2). Similarly, a global downregulation phenotype was observed in both tissue- and 222 

hiPSC-derived DMD myotubes, and concerned multiple mRNAs and/or proteins associated with known disease 223 

phenotypes, such as cell surface markers (e.g. ITGA7 (70)), DAPC organisation (e.g. both SGCA mRNA and 224 

protein (58) as well as SGCG protein (84)), myofibril organisation (e.g. UNC45B (73)), sarcomere formation (e.g. 225 

MYO18B (95)), NMJ function (e.g. CHRNB1 (96)) and calcium homeostasis (e.g. ATP2A2 mRNA (65) and RYR1 226 

protein (59)) (Figure 3B for protein data, 4B for transcript data, S2C for enrichment data).  227 
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Then we compared the DMD/Healthy expression ratios at day 25 with two sets of published omics data from 228 

healthy and DMD muscle biopsies: one obtained at the mRNA level in pre-symptomatic DMD patients younger 229 

than 2 years old (4) and another at the protein level in patients aged from 9 months to 8 years old (97). Both 230 

datasets were closer to day 25 cells (hiPSC-derived myotubes) than day 17 cells as expected. Our hiPSC-derived 231 

myotubes expressed 250 of the 261 dysregulated genes and 203 of the 226 dysregulated proteins found in 232 

these respective studies (Spearman correlations of r = 0.36 and r = 0.42, p-value < 0.0001, Figure 4C, Table S4). 233 

Among these, respectively 90 and 63 genes were also significantly dysregulated in our dataset 234 

(|log2FoldChange| ≥ 0.4, adjusted p-value ≤ 0.05): 88% (79 / 90 genes) of the identified genes from the mRNA 235 

dataset and 78% (49 / 63 genes) of the identified genes from the protein dataset were dysregulated in the 236 

same direction, resulting in Spearman correlation of r = 0.45 and r = 0.59 respectively (p-value ≤ 0.0001, Figure 237 

4C-D, Table S4). 238 

Altogether, these data indicate that hiPSC-derived myotubes recapitulate a full skeletal muscle differentiation 239 

program, and exhibit an embryonic/foetal phenotype. Despite that, it shows that DMD phenotypes are already 240 

detectable at the transcriptional level and correlated with those found in human patients. This validates the 241 

relevance of this cell system to model the DMD pathology.  242 

Markers of fibrosis are intrinsic to DMD hiPSC-derived myotubes 243 

As presented above, the upregulation of chondrocyte markers in DMD cells, although already present at day 244 

10, became significant from day 17 (Figure 2A, Table S2). It was accompanied by the upregulations of the Sonic 245 

hedgehog (SHH) signalling pathway and of multiple collagens (Figure 5A, Table S2). Genes encoding the P4H 246 

collagen synthases, were not dysregulated while RRBP1 (that stimulates collagen synthesis (98)) together with 247 

PLOD1 and PLOD2 (that stabilise collagens (99,100)) were significantly upregulated. Moreover, SETD7, a gene 248 

known for activating collagenases (101), was significantly downregulated. 249 

At the myotube stage, a fibrosis-related gene set was clearly upregulated in DMD cells, as illustrated by the 250 

overexpression of ANGPT1 (102), CTGF (103), collagens (e.g. COL1A2 (104)), matrix metallopeptidases (MMPs) 251 

and tissue inhibitors of metallopeptidase (TIMPs) (105) (Figure 5B). Conversely, the myomiR MIR133 that 252 

controls CTGF expression (106) was repressed (Table S2). Interestingly, gene members of the transforming 253 
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growth factor (TGF)-β pathway, a well-known inducer of fibrosis (107), were not found dysregulated (Figure 254 

5B, Table S2). 255 

Altogether, these data argue for fibrosis as an intrinsic feature of DMD skeletal muscle cells, rather than a 256 

process solely driven by interstitial cell populations in the niche. Furthermore, this muscle-driven fibrosis 257 

seems independent of the TGF-β pathway, and could rather depend on the SHH pathway, together with an 258 

intrinsic upregulation of chondrocyte markers and collagens.  259 

Genes involved in mitochondrial metabolism are drastically dysregulated in DMD hiPSC-derived myotubes 260 

As previously described (108) and illustrated on Figure S6A, genes involved in the energy metabolism of DMD 261 

hiPSC-derived myotubes were dysregulated at the creatine and carbohydrate levels, up to the respiration 262 

(Figure 6A-B, Figure S2C, Table S2). The creatine transporter was not impacted while mRNAs coding for 263 

enzymes of both creatine and creatine phosphate biosynthesis were underrepresented. Neither glucose nor 264 

glutamate transporter expression were impaired. However, genes involved in glutamine biosynthesis (followed 265 

by gluconeogenesis that feeds glycolysis from glutamine) as well as glycogenesis (followed by glycogenolysis 266 

that feeds glycolysis from glycogen) were all downregulated, together with genes coding for glycolysis itself. In 267 

contrast, genes coding for the pentose phosphate pathway (which is in parallel to glycolysis) were upregulated, 268 

especially the oxidative part. Gene expression for pyruvate decarboxylation and generation of acetyl-CoA to 269 

feed the tricarboxylic acid (TCA) cycle was also impaired. Finally, the genes involved in the TCA cycle itself 270 

(Figure 6A, Figure S2C) and the mitochondrial electron transport chain were downregulated Figure 6B, Figure 271 

S2C). This is particularly reinforced by lower levels of a member of the ATP synthase complex ATP5A1 at both 272 

mRNA and protein levels (Figure 6C-D). These mRNA and protein data were completed by the measurement of 273 

ATP levels, which were significantly decreased in DMD hiPSC-derived myotubes (Figure 6E). Moreover, 274 

transcripts encoded by the mitochondrial DNA and mitochondrial DNA itself were decreased in DMD hiPSC-275 

derived myotubes at day 25 (Figure S6B-S6E). 276 

In the presented cell model, a significant downregulation of a mRNA set coding for mitochondrial proteins was 277 

primarily observed at day 10 with the downregulation of 11 % (12 mRNAs, DMD/Healthy expression ratio ≤ 278 

0.76, adjusted p-value ≤ 0.05) of the mitochondrial outer membrane genes, and amplified during the 279 

differentiation of DMD cells (Figure 7A). Therefore, defects depicted at day 25 rooted before the expression of 280 

the skeletal muscle program at day 17. Among them, mRNA downregulation of TSPO, a channel-like molecule 281 
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involved in the modulation of mitochondrial transition pore (109), occurred from day 10 to day 25. This 282 

downregulation was also observed at the protein level at day 17 (Figure 7B). Moreover, the protein import 283 

system was affected from day 17 at both mRNA and protein levels (Figure S6C-S6F). Simultaneously, mRNAs 284 

involved in mitochondrial genome transcription started to be downregulated, followed by genes involved in 285 

mitochondrial DNA replication at day 25 (Figure S6D-S6G). This progressive increase of dysregulations was also 286 

observed at the level of the entire mRNA set related to mitochondria (around 1,000 mRNAs) as illustrated by 287 

the volcano plots as well as the gene ontology enrichments (Figure 7C, Figure S2C). 288 

Our data highlight early impairments in genes coding for mitochondria that start at the somite stage and 289 

increase with the differentiation in an orderly manner. These elements complete the mitochondrial DMD 290 

phenotype described above at the myotube stage.  291 

Altogether, our study demonstrates that DMD starts prior to the expression of well-described markers of 292 

muscle differentiation. It shows that hiPSC-based experimental models of DMD can help identify early disease 293 

manifestations and stratify multiple pathological features over the course of muscle development. 294 

DISCUSSION 295 

Since the discovery of the DMD gene in 1987 (1), DMD cellular phenotypes were considered under the unique 296 

scope of a “mechanical hypothesis” in which dystrophin deficiency led to membrane leakage and ultimately 297 

muscle cell rupture. However, over the last 15-20 years, studies have brought unequivocal evidence that 298 

multiple additional factors are in play, such as calcium intracellular overloads (110,111), excessive oxidative 299 

stress (112,113), metabolic switches (114,115), as well as an overall tissue context where aberrant interactions 300 

between resident cells lead to inflammation and fibro-adipogenesis (116–118). This has progressively led to a 301 

complex picture involving interdependent homeostatic perturbations and to date, the identification of 302 

prevalent pathological features driving the initiation of DMD is hardly feasible. 303 

The skeletal myogenesis modelled here by the differentiation of hiPSCs, without gene overexpression or cell 304 

sorting, homogeneously and robustly recapitulates key developmental steps – pluripotency, mesoderm, 305 

somite and skeletal muscle – without any trace of other lineages. Therefore, it is a suitable dynamic model for 306 

studying human skeletal muscle development in both healthy and DMD cells, offering the possibility to clarify 307 
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the consequences of the absence of dystrophin at each step of the differentiation process, as well as to 308 

explore dystrophin functions and find earlier and more specific disease biomarkers. 309 

As previously observed with pluripotent stem cells (119), hiPSC-derived myotubes at day 25 displayed an 310 

embryonic/foetal gene expression profile. However, a clear distinction must be made between the nature of 311 

the expressed isoforms – embryonic / foetal / postnatal – and the degree of differentiation. For instance, 312 

hiPSC-derived myotubes expressed multiple markers of terminally differentiated muscles at levels higher than 313 

those measured in tissue-derived myotubes. With the idea of exploring human DMD phenotypes during 314 

muscle development, we argued that generating embryonic/foetal myotubes from hiPSCs would not be a 315 

limitation.  316 

In qualitative terms, DMD hiPSC-derived myotubes showed an overall morphology similar to healthy controls, 317 

with cell fusion and clear striation patterns, suggesting that the potential impact of dystrophin during in vitro 318 

differentiation is subtle and does not prevent myotube formation. However, our unbiased mRNA-seq analysis 319 

highlighted striking transcriptome dysregulations at day 25. This includes numerous genes which can be linked 320 

to previously described DMD phenotypes such as 1) DAPC dissociation (120); 2) rupture of calcium 321 

homeostasis (110); 3) myomiR downregulation (60,121); 4) sarcomere destabilisation (122–124); 5) 322 

mitochondrial and metabolism dysregulations (114,115); 6) NMJ fragmentation (125,126) and 7) fibrosis 323 

(118,127). It is interesting to note that these phenotypes are already detected at the transcriptional level in 324 

embryonic/foetal myotubes, while they usually appear postnatally in human patients and other animal 325 

models. In addition, most of them are often considered as consequences of degeneration-regeneration cycles 326 

typical of DMD muscles in vivo (123,128,129) which are absent in our in vitro model, indicating that a part of 327 

these defects are primarily due to the absence of dystrophin itself. In particular, our data suggest that fibrosis 328 

is an intrinsic feature of DMD skeletal muscle cells, and therefore, it does not absolutely require a specific 329 

tissue context or additional cell populations to be detected in vitro. Fibrosis is a major hallmark of DMD 330 

pathophysiology, and the regulation of this process has been largely investigated in the past (107,130). A long-331 

debated question is the implication of the TGFβ signalling pathway (131). In this study, TGFβ signalling was 332 

inhibited up to day 17 by specific molecules contained in the cell culture media, and TGFβ-related genes were 333 

not upregulated at day 25, suggesting that the observed upregulation of fibrosis-related markers is TGFβ- 334 

independent.  335 
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Since several studies in human patients and animal models had described dystrophic phenotypes in DMD 336 

foetuses/infants (9–14), we investigated the precise timing of disease onset in our hiPSC-derived cells. First, 337 

the absence of dystrophin does not modify the capacity of cells derived from adult tissue biopsies to be 338 

reprogramed using the approach developed by Takeshi and Yamanaka (132). Both healthy and DMD cells 339 

retained pluripotency and the capacity to enter the mesoderm compartment at day 3. At that time, the 340 

embryonic dystrophin Dp412e is expressed and only marginal dysregulations are observed in DMD cells, a 341 

priori unrelated to cell fate choice as cells only express paraxial mesoderm markers at levels similar to healthy 342 

controls.  343 

DMD dysregulations are greatly increased at day 10, when cells express somite markers. At that time, we 344 

noticed few significant dysregulations of cell lineage markers, which became more prevalent at day 17 and 25. 345 

This might be an indication that to some extent, cell fate is misguided in DMD cells, where skeletal muscle 346 

markers are underexpressed and replaced by markers of alternative lineages, such as chondrocytes.  347 

First visible at day 10, we identified the dysregulation of mitochondrial genes as one of the key processes 348 

happening in an orderly manner. Interestingly, early observations prior to the discovery of the DMD gene had 349 

hypothesised that DMD was a mitochondrial/metabolic disease based on protein quantifications and enzyme 350 

activities (114,133). Later, mitochondria was identified as a key organelle in DMD, responsible for metabolic 351 

perturbations but also calcium accumulation and generation of reactive oxygen species (110–113). In this 352 

study, numerous genes coding for proteins located in the outer mitochondrial membrane start to be 353 

downregulated from day 10 in DMD cells, such as the benzodiazepine receptor TSPO, a member of the 354 

controversial mitochondrial permeability transition pore (mPTP) (109). The mPTP is a multiprotein complex 355 

whose members are not all precisely identified, and several studies suggest that it might be involved in DMD 356 

pathophysiology (134,135). A chicken-and-egg question currently debated relates to the initiation of these 357 

homeostatic breakdowns, as positive feedbacks exist between mitochondria, oxidative stress and calcium 358 

homeostasis dysregulations (111,112). At the transcriptome level, dysregulations of genes controlling calcium 359 

homeostasis were detected after day 10, suggesting that mitochondrial impairment starts early and has 360 

predominant consequences in DMD, as hypothesised by Timpari et al. (108). Further experiments are needed 361 

to better evaluate the impact of mitochondrial dysregulations at the functional level. 362 

Day 17 marks the entry into the skeletal muscle compartment with the expression of specific transcription 363 

factors, cell surface markers, myomiRs as well as the increase of skeletal muscle variant of dystrophin 364 
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(Dp427m). It also marks the initiation of the skeletal muscle gene dysregulations observed at the myotube 365 

stage (i.e. downregulation of genes involved in DAPC and calcium homeostasis). For instance, the upregulation 366 

of fibrosis-related genes observed in DMD myotubes at day 25 is already visible at day 17, with the 367 

upregulation of the SHH pathway as well as collagen-related genes. In this study, it is seen as an early indicator 368 

of DMD physiopathology, confirming previous observations in DMD infants, both transcriptionally (4) and 369 

histologically (136,137).  370 

Moreover, several myomiRs were found downregulated at days 17 and 25 and seem to play a central part in 371 

multiple DMD phenotypes. Beside their role in myogenesis (67,68), myomiRs can be involved in calcium 372 

homeostasis (138), metabolism and mitochondrial functions (139,140), and fibrosis (106,141). In particular, 373 

MIR1-1 and MIR206 are known to target key genes such as CACNA1C (138), CTGF (106), RRBP1 (141), several 374 

regulators of the pentose phosphate pathway (139), and even transcripts encoded by the mitochondrial 375 

genome (140). Even though the functional consequences of the multiple gene and myomiR dysregulations 376 

highlighted in this study is virtually impossible to anticipate, we believe that myomiRs can be key players in 377 

DMD physiopathology. 378 

Few studies argued that DMD starts before the expression of the muscular dystrophin protein (18,142). Our 379 

data suggests that Dp427m is actually expressed before muscle commitment but at a lower level. This fact 380 

might explain why disease phenotypes seem to be initiated at the somite stage. This early initiation could also 381 

be explained by the deficit in other dystrophin isoforms expressed before day 10, such as Dp412e at day 3 (15), 382 

as well as by the decrease or loss of other RNA products expressed from the DMD locus, such as the ubiquitous 383 

isoform Dp71-40 or long non-coding RNAs (143). The lack of knowledge around these additional products from 384 

the DMD locus contrasts with the extensive amount of data on the structure and function of the main 385 

muscular isoform Dp427m whose most studied role is to stabilise muscle cell membrane during contraction 386 

(144). DMD knockdown results at day 17 in a healthy cell line with partial mimicking of DMD phenotype could 387 

suggest a dynamic process in DMD: some dysregulations might not be reproduced by removing DMD after 388 

muscle commitment highlighting the fact that absence of DMD locus expression during development could 389 

have impacts before cells becoming muscles and, therefore, before Dp427m having its well-known role in 390 

muscles, as it is shown by our multi-omic study. The role of Dp427m in non-muscle cells could also be 391 

questioned. Other tissue specific isoforms have been described, e.g. in the retina (Dp260 (30)) and in the brain 392 

.CC-BY-NC 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/720920doi: bioRxiv preprint 

https://doi.org/10.1101/720920
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

(Dp427c (145), Dp427p (29) and Dp140 (28)), some of which are also slightly expressed in skeletal muscles 393 

under certain circumstances (146), but their role remains mostly unknown. Interestingly, in our data, the 394 

expression of Dp260 follows the same pattern of expression as Dp427m. It has been shown that the expression 395 

of Dp260 in mdx/utrnK/K mice can rescue the mdx phenotype (147), indicating overlapping functions between 396 

Dp427m and Dp260. On the other hand, it is now well established that a third of DMD patients display 397 

cognitive deficiencies – which might be correlated with mutations affecting Dp140 (148) – attesting that 398 

dystrophin can be involved in other cell functions.  399 

To date, the standard of care for DMD patients helps mitigate and delay some of the most severe symptoms 400 

but remains insufficient to have a curative effect. Despite decades of work with the mdx mouse model, only a 401 

few pharmacological candidate molecules have moved forward to clinical trials, with variable efficiency. As 402 

several gene therapy trials have been recently initiated with promising preliminary data, we believe that our 403 

human in vitro model system might be useful for the development of combination therapies. Recent studies 404 

have proved that the association of two different therapeutic approaches could have a synergistic effect on 405 

the overall treatment outcome, and can be used for instance to boost the effect of dystrophin re-expression by 406 

antisense oligonucleotides or gene therapy (8,149,150). Here, our extensive RNA-seq data could help identify 407 

relevant therapeutic targets for pharmacological intervention, such as CTGF – involved in fibrosis and found 408 

upregulated in DMD myotubes – which can be inhibited by monoclonal antibodies (151), or TSPO receptor – a 409 

receptor potentially member of the mPTP downregulated in DMD cells – targetable with benzodiazepines 410 

(152). In addition, our model might also be used as a platform to screen pharmacological compounds in an 411 

unbiased high-throughput manner. Indeed, skeletal muscle progenitor cells at day 17 can be robustly 412 

amplified, cryopreserved and plated in a 384-well plate format (data not shown). Thus, they could be an 413 

interesting tool to highlight pharmacological compounds to be used alone, or in combination with gene 414 

therapy. 415 

To summarise, the directed differentiation of hiPSCs without gene overexpression or cell sorting 416 

homogeneously and robustly recapitulates key developmental steps of skeletal myogenesis and generates 417 

embryonic/foetal myotubes without any trace of other lineages. The absence of dystrophin does not 418 

compromise cell reprogramming, pluripotency or the entry into the mesoderm compartment. While a very low 419 

amount of the long muscular dystrophin isoform is expressed, a significant transcriptome dysregulation can be 420 
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observed at the somite stage that implicates mitochondria prior to dysregulations of genes controlling calcium 421 

homeostasis. Despite their ability to enter the skeletal muscle lineage compartment and become myotubes, 422 

DMD cells exhibit an imbalance in cell fate choice as they express lower amounts of key muscle proteins and 423 

retain basal expression of marker genes from other lineages, leading to the well-characterised DMD 424 

phenotypes including muscle features and metabolism dysregulations as well as fibrosis. Altogether, these 425 

data argue for 1) a deficit and not a delay in DMD differentiation; 2) seeing DMD as a progressive 426 

developmental disease as well as a metabolic pathology whose onset is triggered before the entry into the 427 

skeletal muscle compartment; and 3) fibrosis as an intrinsic feature of DMD muscle cells. Future studies could 428 

explore the additional roles of DMD locus products and the impact of their loss during skeletal muscle 429 

development, as well as find earlier and more specific disease biomarkers and develop combination 430 

therapeutic strategies using high-throughput drug screening. 431 

All the omics data from this study will be soon available online for exploration through a graphical interface. 432 

For additional information, please send an email to shiny@virginie-mournetas.fr. 433 

MATERIALS AND METHODS 434 

Ethics, consent, and permissions  435 

At the Cochin Hospital-Cochin Institute, the collection of primary cultures of myoblasts was established from 436 

patient muscle biopsies conducted as part of medical diagnostic procedure of neuromuscular disorders. For 437 

each patient included in this study, signed informed consent was obtained to collect and study biological 438 

resources, and establish primary cultures of fibroblasts and myoblasts at the Hospital Cell Bank-Cochin 439 

Assistance Publique—Hôpitaux de Paris (APHP). This collection of myoblasts was declared to legal and ethical 440 

authorities at the Ministry of Research (number of declaration, 701, n° of the modified declaration, 701–1) via 441 

the medical hosting institution, APHP, and to the “Commission Nationale de l’Informatique et des Libertés” 442 

(CNIL, number of declaration, 1154515).  443 
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Cells 444 

Human primary adult myoblasts from healthy individuals and DMD patients were provided by Celogos and 445 

Cochin Hospital-Cochin Institute (Table S3). In Celogos laboratory, cell preparation was done according to 446 

patent US2010/018873 A1.  447 

Cell culture 448 

Human tissue-derived myoblasts – Primary myoblasts were maintained in a myoblast medium: DMEM/F-12, 449 

HEPES (31330–038, Thermo Fisher Scientific) supplemented with 10 % fetal bovine serum (FBS, Hyclone, 450 

Logan, UT), 10 ng/mL fibroblast growth factor 2 (FGF2, 100-18B, Peprotech), and 50 nM Dexamethasone 451 

(D4902, Sigma-Aldrich) on 0.1 % gelatin (G1393, Sigma-Aldrich) coated culture ware. 452 

Human tissue-derived myotubes – Primary myoblasts were differentiated into myotubes. Cells were seeded at 453 

600 cells/cm
2
 on 0.1 % gelatin coated cultureware in myoblast medium containing 1 mM Acid ascorbic 2P 454 

(A8960, Sigma-Aldrich). 455 

Human induced pluripotent stem cells – Primary myoblasts were reprogrammed into hiPSCs following the 456 

protocol described in (15), using the Yamanaka’s factors POU5F1, SOX2 and KLF4 transduction by ecotropic or 457 

amphotropic vectors (Table S3). HiPSCs were adapted and maintained with mTeSR™1 culture medium (05850, 458 

Stemcell Technologies) on Corning® Matrigel® Basement Membrane Matrix, lactose dehydrogenase elevating 459 

virus (LDEV)-Free-coated cultureware (354234, Corning Incorporated). Cells were then seeded at 20,000 460 

cells/cm
2
, passaged and thawed each time with 10 μM StemMACS™ Y27632. 461 

Human iPSC-derived cell – Six hiPSCs (3 healthy and 3 DMD) were differentiated three times toward skeletal 462 

muscle lineage using commercial media designed from Caron’s work (23) (Skeletal Muscle Induction 463 

medium SKM01, Myoblast Cell Culture Medium SKM02, Myotube Cell Culture Medium SKM03, AMSbio). This 464 

protocol is a 2D directed differentiation that uses 3 consecutive defined media (SKM01 from day 0 to 10, 465 

SKM02 from day 10 to 17 and SKM03 from day 17 to d25) and only one cell passage at day 10. Cells were 466 

seeded at 3,500 cells/cm
2
 at day 0 and day 10 on BioCoat™ Collagen I cultureware (356485, Corning 467 

Incorporated). Part of the cell culture was frozen at day 17 for further experiments such as DNA extraction. 468 
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These cells were then thaw at 30,000 cells/cm
2
, and cultured in SKM02 for 3 days and SKM03 for 3 additional 469 

days to get myotubes. 470 

DNA and RNA experiments 471 

RNA extraction and quality – RNA extraction was done in the six cell lines at 7 different time points: tissue-472 

derived myoblast and tissue-derived myotube, as well as during hiPSC differentiation at day 0, 3, 10, 17 and 25 473 

(hiPSC-derived myotube) using the miRNeasy Mini kit (217004, QIAgen) on the QIAcube instrument. RNAs 474 

coming from the part A of the extraction protocol was used for mRNA-seq and RT-qPCR. RNAs coming from the 475 

part B of the extraction protocol was used for miRseq. PartA RNA was quantified on Nanodrop 476 

spectrophotometer (ND-1000, Thermo Fisher Scientific) and purity/quality (RIN ≥ 7) was assessed on the 2200 477 

TapeStation using the Agilent RNA ScreenTape (5067-5576 / 5067-5577 / 5067-5578, Agilent). PartB RNA was 478 

quantified and purity/quality was assessed on the 2100 Agilent BioAnlayzer using the Agilent small RNA kit 479 

(5067-1548, Agilent). 480 

Reverse transcription – 500 ng of total RNA were reverse transcribed with random primers (48190–011, 481 

Thermo Fisher Scientific), oligo(dT) (SO131, Thermo Fisher Scientific), and deoxynucleotide (dNTP, 10297–018, 482 

Thermo Fisher Scientific) using Superscript® III reverse transcriptase (18080–044, Thermo Fisher Scientific). 483 

Thermocycling conditions were 10 min, 25 °C; 60 min, 55 °C; and 15 min, 75 °C.  484 

qPCR – We amplified cDNA/total DNA using primers (Thermo Fisher Scientific) listed in Table S6. They were 485 

designed using Primer blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast). The amplification efficiency of 486 

each primer set was preliminarily determined by running a standard curve. Detection was performed using a 487 

QuantStudio™ 12K Flex Real-Time PCR System (Thermo Fisher Scientific). Reactions were carried out in a 384-488 

well plate, with 10 μL containing 2.5 µL of 1/10 cDNA or 6.25 ng/uL total DNA, 0.2 µL of mixed forward and 489 

reverse primers at 10 µM each, and 5 µL of 2X Luminaris Color HiGreen qPCR Master Mix Low Rox (K0973, 490 

Thermo Fisher Scientific). Thermocycling conditions were 50 °C during 2 min, 95 °C during 10 min, followed by 491 

45 cycles including 15 sec at 95 °C, 1 min at 60 °C plus a dissociation stage. All samples were measured in 492 

triplicate. Experiments were normalised using UBC as reference gene and relative quantification was done 493 

with the ΔΔCt method. 494 
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mRNA-seq – Libraries are prepared with TruSeq Stranded mRNA kit protocol according supplier 495 

recommendations. Briefly, the key stages of this protocol are successively, the purification of PolyA containing 496 

mRNA molecules using poly-T oligo attached magnetic beads from 1µg total RNA, a fragmentation using 497 

divalent cations under elevated temperature to obtain approximately 300bp pieces, double strand cDNA 498 

synthesis and finally Illumina adapter ligation and cDNA library amplification by PCR for sequencing. 499 

Sequencing is then carried out on paired-end 100 b/75 b of Illumina HiSeq 4000.  500 

An RNA-seq analysis workflow was designed using snakemake 3.5.4 (153) for read quality estimation, mapping 501 

and differential expression analysis. Quality estimation was obtained with FastQC 0.11.5 502 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Mapping to the human genome assembly 503 

Ensembl GRCh37.87 (43,695 transcripts) was performed with STAR 2.5.0a (154). According to STAR manual and 504 

for more sensitive novel junction discovery, the junctions detected in a first round of mapping were used in a 505 

second mapping round. Read strandness was confirmed using RSeQC (155). Analysis results were summarised 506 

using MultiQC 1.0 (156). Normalised counts (median ratio normalisation, MRN) and differential expression 507 

analysis was performed with DESeq2 1.16.1 (157), considering pairwise comparisons with all developmental 508 

stages and comparing DMD versus healthy cells within developmental stages. BiomaRt 2.30.0 (158) was used 509 

to fetch gene annotations from Ensembl. Transcripts with |log2FoldChange| ≥ 0.4 (equivalent of DMD/healthy 510 

ratio ≤ 0.76 or ≥ 1.32) and adjusted p-value ≤ 0.05 were considered differentially expressed. RNA-seq data 511 

have been deposited in the ArrayExpress database (159) at EMBL-EBI under accession number E-MTAB-8321 512 

(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8321). 513 

miRNA-seq – 10 ng of miRNA was reverse transcribed using the Ion Total RNA-seq kit v2 514 

(4475936, Thermofisher Scientific) following the protocol of the manufacturer for small RNA libraries. The 515 

cDNA libraries were amplified and barcoded using Ion Total RNA-seq kit v2 and Ion Xpress RNA-seq Barcode 516 

Adapters 1-16 Kit (Thermofisher Scientific). The amplicons were quantified using Agilent High Sensitivity DNA 517 

kit before the samples were pooled in sets of fifteen. Emulsion PCR and enrichment was performed on the Ion 518 

OT2 system Instrument using the Ion PI Hi-Q OT2 200 kit (A26434, Thermofisher Scientific). Samples were 519 

loaded on an Ion PI v3 Chip and sequenced on the Ion Proton System using Ion PI Hi-Q sequencing 200 kit 520 

chemistry (200 bp read length; A26433, Thermofisher Scientific). Sequencing reads were trimmed with Prinseq 521 

(160) (v0.20.4) (--trim-right 20) and filtered by average quality score (--trim-qual 20). Reads with a size less 522 
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than 15 bp have been removed and reads with a size greater than 100 bp have been trimmed with Cutadapt 523 

(v1.16)(161). Mapping to the human genome assembly Ensembl GRCh37.87 (3111 transcripts) was performed 524 

with STAR 2.5.3a (154). Normalised counts (median ratio normalisation, MRN) and differential expression 525 

analysis was performed with DESeq2 1.16.1 (157), considering pairwise comparisons with all developmental 526 

stages and comparing DMD versus healthy cells within developmental stages. Transcripts with 527 

|log2FoldChange| ≥ 0.4 (equivalent of DMD/healthy ratio ≤ 0.76 or ≥ 1.32) and p-value ≤ 0.05 were considered 528 

differentially expressed. The use of p-value instead of adjusted p-value is justified by biological meaning(162) 529 

(i.e. well-known regulated / dysregulated miRNAs had a p-value ≤ 0.05 but not an adjusted p-value ≤ 0.05). 530 

miRNA-seq data have been deposited in the ArrayExpress database (159) at EMBL-EBI under accession number 531 

E-MTAB-8293 (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8293). 532 

High-throughput data analyses – Graphs were realised using RStudio. Viridis 0.5.1 library (163) was used for 533 

the colour palette easier to read with colour blindness and print well in grey scale. For unsupervised analyses, 534 

normalised counts were standardised with scale function (center = TRUE, scale = TRUE) and plotted with 535 

corrplot function from corrplot 0.84 library (164). Spearman correlation was done with the cor function 536 

(method = "spearman", use = "pairwise.complete.obs") on standardised data. Hierarchical clustering and 537 

heatmap were performed with gplots 3.0.3 library (165) heatmap.2 function on standardised data. Gene 538 

enrichment data were retrieved from DAVID database using RDAVIDWebService 1.24.0 library (166) on 539 

supervised list of mRNAs (mRNA-seq data: adjusted p-value ≤ 0.01, normalised counts ≥ 5 in at least one 540 

sample, ratio ≤ 0.5 or ≥ 2 for myogenesis (Figure S2B) and ratio ≤ 0.76 or ≥ 1.32 for DMD phenotype (Figure 541 

S2C); enrichment data: Benjamini value ≤ 0.05, enrichment ≥ 1.5). Only Gene Ontology terms were processed. 542 

Spearman correlations for the comparison transcriptomics vs proteomics at day 17 and for comparisons with 543 

published omics datasets were performed using two-tailed nonparametric Spearman correlation on GraphPad 544 

Prism software. 545 

Exon skipping – 1,000,000 healthy M180 cells were transfected after 17 days of culture by electroporation 546 

with a phosphorodiamidate morpholino oligo (PMO) targeting exon 7 of the DMD gene at 10 or 100 µM, or a 547 

PMO Control at 100 µM in 100 µL solution from the P3 Primary Cell 4D-Nucleofector
®
 X Kit L (V4XP-3024, 548 

Lonza) using the CB150 program on the 4D-Nucleofector
™

 System (Lonza). Cells were seeded at a density of 549 

100,000 cells/cm². RNA extraction was carried on transfected cells 24 h, 48 h and 72 h later followed by RT as 550 
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described above. PCR was done on1 uL of cDNA using 10 µM of forward and reverse primers (Fw 5'- 551 

AAGATTCTCCTGAGCTGGGTC -3' and Rv 5'- AGTCACTTTAGGTGGCCTTGG -3', Life technologies) and 1 U Taq 552 

DNA polymerase (10342, Life technologies) as described by the manufacturer’s instructions, for a final reaction 553 

volume of 25 µL. PCR reaction started by a step at 94°C for 3 min, followed by 27 cycles at 94°C for 45 s, 55°C 554 

for 45 s and 72°C for 45 s, and a final step at 72°C for 5 min. Exon skipping was analyzed using the DNA 1000 kit 555 

(5067, Agilent) on the Agilent 2100 Bioanalyzer. Full length PCR product was 372 bp and exon skipped length 556 

PCR product was 253 bp. Results were computed by the Agilent 2100 Bioanalyzer software v3.81. Spearman 557 

correlations were performed using two-tailed nonparametric Spearman correlation on GraphPad Prism 558 

software. 559 

Protein experiments 560 

Immunolabelling – Cells (healthy hiPSC 1/ DMD hiPSC 2, Table S5) at day 17 of culture were thawed and 561 

seeded at 10,000 cells/cm
2
 in SKM02 medium in Falcon® 96-well microplate (353219, Corning) coated with 562 

0.1% gelatin (G1393, Sigma-Aldrich) and 2.4 μg/mL laminin (23017015, Thermofischer Scientific) in PBS 1X 563 

(D8537, Sigma-Aldrich). After 4 days, cells were switched to DMEM/F-12, HEPES (31330038, Thermofischer 564 

Scientific) with 2% Horse serum (H1270, Sigma-Aldrich). Before staining, after removing the culture medium, 565 

cells were fixed 15 min at 4°C with PFA 4% (15710, Euromedex) after 7 days of culture. A first quick Phosphate 566 

buffered saline (PBS) 1X tablets (P4417, Sigma-Aldrich) wash was done, followed by another lasting 10 min. 567 

Then, a solution with PBS 1X, Triton™ X-100 0.25% (T8787, Sigma-Aldrich) and Bovine serum albumin 2.5% 568 

(BSA, A9418, Sigma-Aldrich) was added and incubated 30 min at room temperature. Primary antibody was 569 

finally added, diluted in the same buffer (α-actinin 1/500, A7811, Sigma-Aldrich), overnight at 4°C. The next 570 

day, two quick PBS 1X washes were followed by a third incubated 10 min at room temperature. An incubation 571 

was done 45 min at room temperature with a mix of 4′,6-Diamidine-2′-phenylindole dihydrochloride (DAPI, 572 

1µg/mL, 10236276001, Sigma-Aldrich) and the secondary antibody Donkey anti-Mouse Alexa Fluor 555 in PBS 573 

1X, (1/1000, A-31570, Thermofischer Scientific). Finally, two quick PBS 1X washes were followed by a third 574 

incubated 10 min at room temperature. The stained cells were kept in PBS 1X at 4°C before imaging with a 575 

Zeiss LSM880 Airyscan confocal and Zen software (Black edition). 576 
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Western blotting – For tissue-derived myotubes, after three rinses with cold PBS 1X (w/o Ca2+ and Mg2+, 577 

D8537, Sigma-Aldrich), protein extracts were isolated from cultured cells by scraping (010154, Dutscher) with 578 

an extraction protein buffer (NaCl 150 mM, Tris 50 mM, EDTA 10 mM (AM9260G, ThermoFisher Scientific), 579 

Triton 1X, 1/100 Protease Inhibitor Cocktail (P8340, Sigma-Aldrich), PhosSTOP tablet (04906845001, Roche 580 

Diagnostics)). For hiPSC-derived myotubes, cell pellets were rinsed once with cold PBS 1X, spun 5 min at 300 g 581 

and resuspended in the same extraction protein buffer. Protein Extracts were centrifuged at 4°C 10 min at 582 

16,000 g and supernatants were kept at −80 °C. Quantitation of total protein was done with Pierce BCA protein 583 

assay kit (23225, ThermoFischer Scientific). Before gel loading, protein extracts were mixed with 9µL of loading 584 

buffer (Urea 4M, SDS 3.8%, Glycerol 20%, Tris 75mM pH 6.8, 5% β-mercaptoethanol, 0.1mg/mL Bromophenol 585 

blue) and completed to 28µL (for one well) with extraction protein buffer, then heated once 5 min at 95 °C. 586 

Western blots were performed either with Criterion ™ XT Tris-Acetate Precast Gels 3–8 % (3450130, Bio-Rad, 587 

Hercules, CA), XT Tricine running buffer (161–0790, Bio-Rad) and ran at room temperature for 1 hour and 15 588 

min at 150 V for RYR1 (1/1000, MA3-925, ThermoFisher Scientific), MF20 (1/500, DSHB, concentrate), 589 

Manex50 (1/30, DSHB), α-sarcoglycane (1/150, A-SARC-L-CE, Leica biosystems), γ-sarcoglycane (1/150, G-590 

SARC-CE, Leica biosystems), or with 4–15% Criterion™ TGX™ Precast Midi Protein Gel (5671084, Bio-Rad), 10x 591 

Tris/Glycine/SDS Running Buffer (1610772), and ran at room temperature for 1 hour at 200 V for CaV1.1 592 

(1/1000, MA3-920, ThermoFisher Scientific), ATP5A (1/1,000, ab14748, ABCAM), Semaphorin 6A (1/55, 593 

AF1146, R&D systems) and GLI3 (1/200, AF3690, R&D systems). Gels were rinsed once in water and blotted 594 

either with “high molecular weight” or “mixed molecular weight” program of TransBlot® Turbo™ transfer 595 

system (Bio-Rad) using Trans-Blot®Turbo™ Midi Nitrocellulose Transfer Packs (170–4159, Bio-Rad). Blots were 596 

then processed with the SNAP i.d.® 2.0 Protein Detection System following the manufacturer’s protocol, with 597 

Odyssey® Blocking Buffer (927-40003, LI-COR) for blocking and with 0,2% Tween® 20 added for antibody 598 

dilutions (28829.296, VWR), washes were done with phosphate-buffered saline tween (PBST) buffer (PBS 1X 599 

tablets, P4417, Sigma-Aldrich; 0.1 % Tween® 20). Every primary antibody was pooled with either α-actinin 600 

(1/12,500, sc-17829, Santa Cruz or 1/7000, A7811, Sigma-Aldrich) or α-tubulin (1/6666, Ab7291, Abcam). For 601 

secondary antibodies, either IRDye 800CW donkey anti-mouse and/or IRDye® 680RD donkey anti-goat were 602 

used (1/5000-1/10000, 926-32212, 926-68074, LI-COR). After completion of SNAP i.d.® general protocol, with 603 

the membrane still in the blot holder, two PBS 1X washes were finally done before band visualisations with 604 
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Odyssey® CLx Imaging System and quantification with Image Studio Lite software (Version 5.2). Statistical 605 

analysis was performed using unpaired t test on GraphPad Prism software. 606 

TMT Isobaric quantitative proteomics –  607 

Samples Preparation: Cells at day 17 were collected and resuspended in 90% FBS (Hyclone), 10% DMSO 608 

(A3672.0050, VWR), cooled down until -90°C with the CryoMed™ device (ThermoFisher Scientific), before 609 

storage in liquid nitrogen. Cells were then thawed and washed 5 times with cold PBS and air was replaced by 610 

Argon to thoroughly dry the pellet that was flash frozen in liquid nitrogen. 5-10 times the approximate cell 611 

pellet volume of 0.5 M triethyl ammonium bicarbonate (TEAB) with 0.05% SDS was added to the cell pellet for 612 

protein extraction. Cell pellet was re-suspended and triturated by passing through a 23-gauge needle and 1ml 613 

syringe for 30 times. Samples were then sonicated on ice at amplitude of 20% for 30 x 2 sec bursts and 614 

centrifuged at 16000g for 10 min at 4°C. Supernatant was transferred to a fresh Eppendorf tube. Protein was 615 

quantified by nanodrop. 100-150µg of protein was aliquoted for each individual sample and 2µl TCEP (50mM 616 

tris-2-carboxymethyl phosphine) was added for every 20µl of protein used for reducing the samples. After 1 hr 617 

incubation at 60°C, 1µl MMTS (200mM methylmethane thiosulphonate) was added for every 20µl of protein 618 

used for alkylating/’blocking’ the samples. Finally, after a 10 min incubation at RT, samples were trypsinised by 619 

addition of 6-7.5µl of 500ng/µl trypsin. The ration between enzyme: substrate was 1:40. Samples were 620 

incubated overnight at 37°C in the dark. TMT labelling: When TMT reagents reached room temperature, 50µl 621 

of isopropanol/[acetonitrile] was added to each TMT 11-plex reagent and was incubated at RT for 2 hrs, in the 622 

dark. 8 µl of 5% hydroxylamine was added to neutralise the reaction. Each sample was separately lyophilised 623 

at 45
o
C. Samples have been stored at -20

o
C or used immediately.  624 

Offline C4 High Performance Liquid Chromatography (HPLC): All 8 samples were pooled together in 60µl of 97% 625 

mobile phase A (99.92% % H2O, 0.08% NH4OH) and 3% mobile phase B (99.92% % Acetonitrile, 0.02% NH4OH) 626 

by serially reconstituting each sample. Extra 40µl of mobile phase was added to sample 1, after sample has 627 

been well vortexed, all the contents of sample 1 tube were transferred to the tube with the sample 2 (and 628 

serially repeated until all samples were pooled). Final volume of samples needed to be 100µl. After sample was 629 

centrifuged at 13000g for 10 min, supernatant was collected with an HPLC injection syringe. 100µl was injected 630 

onto the sample loop. Fractions were collected in a peak dependent manner. Finally, fractions were lyophilised 631 

at 45
o
C and stored at -20

o
C until required. The used column was a Kromasil C4 column 100Å pore size, 3.5µm 632 
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particle size, 2.1mm inner diameter and 150mm length. The gradient for C4 separation was (RT in min - %B): 0-633 

3; 10-3; 11-5; 16-5; 65-20; 100-30; 15-80; 120-80; 125-3.  634 

Solid Phase Extraction Cleaning of peptides fractions: A GracePureTMT SPE C18-Aq cartridge was used for pre-635 

cleaning of samples (Support: Silica, % Carbon: 12.5%, With endcapping, Surface area: 518m
2
/g, Particle size: 636 

50μm, Pore size: 60Å, Water-wettable). Samples were reconstituted using in total 400μl of 1% ACN, 0.01% FA. 637 

Cartridge was washed with 600μl of ACN. ACN was then completely flushed out of the column at dropwise 638 

speed. This activated the ligands. Then 1% ACN, 0.01% FA (600μl) was flushed through the cartridge to 639 

equilibrate the sorbent. 400μl of the sample was loaded in the cartridge. It was then very slowly flushed 640 

through the cartridge and recovered into a fresh tube. This process was repeated 3 times. 2 volumes of 250μl 641 

of 1%ACN, 0.01%FA were used to clean and de-salt the sample. It was flushed through very slowly. 2 volumes 642 

(250μl each) were used per step (2% ACN, 10% ACN, 30% ACN, 50% ACN, 70% ACN). This cycle was repeated 643 

twice. Each particular concentration was pooled in one tube. Samples were dried to dryness in a Speedvac at 644 

RT overnight and stored at -20
o
C. Like previously, samples were pooled with 100µl of 97% mobile phase A 645 

(99.92% % H2O, 0.08% NH4OH) and 3% mobile phase B (99.92% % Acetonitrile, 0.02% NH4OH) and injected 646 

onto the sample loop. Fractions were collected in a peak dependent manner. The gradient for SPE cleaned 647 

peptides C4 separation (RT in min - %B): 0-2; 10-2; 20-5; 25-5; 35-20; 55-35; 60-35; 70-80; 75-80; 80-3. 648 

Online C18 High Precision Liquid Chromatography (HPLC): 30µl of loading phase (2% acetonitrile, 1.0% formic 649 

acid) was added to each fraction-containing Eppendorf tube. Samples were vortexed and centrifuged. Blanks 650 

(30µl mobile phase) were added into well A1 to A12. 30µl of sample 1 was pipetted into well B1, sample 2 in 651 

well B2 and so on. An orthogonal 2D-LC-MS/MS analysis was performed with the Dionex Ultimate 3000 UHPLC 652 

system coupled with the ultra-high-resolution nano ESI LTQ-Velos Pro Orbitrap Elite mass spectrometer 653 

(Thermo Scientific).  654 

Data analysis: HCD and CID tandem mass spectra were collected and submitted to Sequest search engine 655 

implemented on the Proteome Discoverer software version 1.4 for peptide and protein identifications. All 656 

spectra were searched against the UniProtKB SwissProt. The level of confidence for peptide identifications was 657 

estimated using the Percolator node with decoy database searching. False discovery rate (FDR) was set to 0.05, 658 

and validation was based on the q-Value. Protein ratios were normalised to protein median and peptides with 659 

missing TMT values were rejected from protein quantification. Phosphorylation localisation probability was 660 

estimated with the phosphoRS node. Protein ratios were transformed to log2 ratios and significant changes 661 
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were determined by one sample T-test. To reduce the impact of possible false positive identifications, more 662 

parameters were set: 1) only proteins with more than two quantified unique peptides. 2) DMD/Healthy ratio ≥ 663 

1.32 or ≤ 0.76 and 3) only FDR corrected p-value ≤ 0.05 were retained for bioinformatics analysis. The list of 664 

proteins quantified in the 6 samples is in Table S3. Proteomic data have been deposited in the PRIDE Archive 665 

database (167) at EMBL-EBI under accession number PXD015355 666 

(https://www.ebi.ac.uk/pride/archive/projects/PXD015355). 667 

ATP experiments – Two healthy (M180 and M398) and two DMD (M202 and M418) cell lines after 17 days of 668 

culture were seeded in 384-well plates at a density of 30,000 cells/cm
²
. Living cells were staining with 669 

HOECHST at a concentration of 1/300 six days later for cell quantification (nuclei per well were counted using 670 

the CX7 imaging system, ThermoFisher). ATP measure was done using the CellTiter-Glo™ Luminescent Cell 671 

Viability Assay Kit (Promega) following the manufacturer’s protocol and normalised by the cell quantification. 672 

Statistical analysis was performed using one-sample t test on GraphPad Prism software (each healthy cell line 673 

was compared to each DMD cell line). 674 
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FIGURE LEGENDS 687 

Figure 1 – Differentiation dynamics of hiPSCs (D0) into MyoT (D25) in healthy cells at the transcriptomic 688 

level. A) Spearman correlation matrix of transcriptomes (mRNAs, right) and miRnomes (miRNAs, left). Yellow 689 

dots indicate a stronger correlation. B) Gene expression heatmap of selected differentiation markers. (D: day; 690 

hiPSC: human induced pluripotent stem cell; MyoT: myotube). 691 

Figure 2 – Differentiation dynamics of hiPSCs (D0) into MyoT (D25) in DMD cells. A) Dotplot of DMD/healthy 692 

expression ratios of selected differentiation markers. Statistical differences are indicated in brackets after gene 693 

names, and grey circles around the corresponding dots. B) Proportions of significantly dysregulated mRNAs 694 

(adjusted p-value ≤ 0.05) in DMD cells at each time points. Expression of C) MIR1-1 and D) ATP2A2 mRNA 695 

during differentiation. E) ATP2A2 protein level at D17. (*adjusted p-value ≤ 0.05, **adjusted p-value ≤ 0.01, 696 

***adjusted p-value ≤ 0.001, ****adjusted p-value ≤ 0.0001; D: day; hiPSC: human induced pluripotent stem 697 

cell; MyoT: myotube). 698 

Figure 3 – Comparison of healthy and DMD MyoT from hiPSCs and tissues at the protein level. A) hiPSC-699 

derived MyoT immunolabelling of α-actinin (red) and nuclei (DAPI, blue) in healthy (left) and DMD cells (right). 700 

B) Representative Western blots and related quantifications of DMD, SGCA, SGCG, myosin heavy chains, 701 

CACNA1S and RYR1 from protein extracts in healthy and DMD hiPSC-derived and tissue-derived MyoT (X: 0.25 702 

µg of total protein was used in hiPSC-derived MyoT instead of 7µg in tissue-derived MyoT - *p-value ≤ 0.05, 703 

**p-value ≤ 0.01, ***p-value ≤ 0.001, ****p-value ≤ 0.0001). (hiPSC: human induced pluripotent stem cell; 704 

MyoT: myotube). 705 

Figure 4 – Manifestation of the DMD phenotype in the transcriptome and miRnome of myotubes derived 706 

from hiPSCs and tissues. A) Hierarchical clustering and heatmap in healthy hiPSCs (D0), hiPSC-derived MyoT 707 

and tissue-derived MyoT with selected skeletal muscle transcripts and miRNAs. B) Volcano plots of 708 

dysregulated mRNAs/miRNAs in hiPSC-derived MyoT (left) and tissue-derived MyoT (right) – vertical grey 709 

dashed lines represent DMD/Healthy ratio thresholds at 0.76 or 1.32 - the horizontal grey dashed line 710 

represents the adjusted p-value threshold at 0.05. Comparisons of DMD/Healthy expression ratios at D17 and 711 

D25 with published omics data from muscle biopsies (4,97) : C) number of genes in black and Spearman 712 

correlation coefficients in brown found in common with Pescatori et al.’s mRNA data (top) and Capitanio et 713 
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al.’s protein data (bottom) as well as D) correlation graphs of the D25 data compared with Pescatori et al. 714 

mRNA data (left) and Capitanio et al. protein data (right). Genes with |log2FoldChange| ≥ 0.4 are in blue if 715 

adjusted p-value ≥ 0.05 and yellow if adjusted p-value ≤ 0.05. (DAPC: dystrophin-associated protein complex; 716 

hiPSC: human induced pluripotent stem cell; MyoT: myotube; NMJ: neuromuscular junction; TF: transcription 717 

factor MyoT - *p-value ≤ 0.05, **p-value ≤ 0.01, ***p-value ≤ 0.001, ****p-value ≤ 0.0001).  718 

Figure 5 – Illustration of the fibrosis phenotypes in DMD cells. Volcano plots of dysregulated mRNAs/miRNAs 719 

related to A) the SHH pathway and collagen metabolism at D10/17/25; and B) fibrosis at D25 – vertical grey 720 

dashed lines represent DMD/Healthy ratio thresholds at 0.76 or 1.32 - the horizontal grey dashed line 721 

represents the adjusted p-value threshold at 0.05. (D: day; MMP: matrix metallopeptidase; SHH: sonic 722 

hedgehog pathway; TIMP: tissue inhibitor of metallopeptidase; TGF: transforming growth factor). 723 

Figure 6 – Illustration of the metabolic and mitochondrial phenotypes in DMD cells. Volcano plots of 724 

dysregulated mRNAs/miRNAs related to A) principal metabolic pathways; and B) the constitution of the five 725 

mitochondrial respiratory complexes in DMD hiPSC-derived MyoT – vertical grey dashed lines represent 726 

DMD/Healthy ratio thresholds at 0.76 or 1.32 - the horizontal grey dashed line represents the adjusted p-value 727 

threshold at 0.05. Quantification of ATP5A1 expression C) at the mRNA level during differentiation, and D) at 728 

the protein level at D17 (TMT proteomic data, left) and D25 (Western blot data, right). E) Measure of ATP 729 

levels in DMD cell lines, relative to Healthy controls. (*adjusted p-value ≤ 0.05, **adjusted p-value ≤ 0.01, 730 

***adjusted p-value ≤ 0.001, ****adjusted p-value ≤ 0.0001). (D: day; hiPSC: human induced pluripotent stem 731 

cell, MyoT: myotube) 732 

Figure 7 – Mitochondrial dysregulations in DMD cells during differentiation. A) Absolute (top) and relative 733 

numbers (%, bottom) of dysregulated genes from the different mitochondrial compartments over the course 734 

of DMD hiPSC differentiation. B) Expression ratios of selected mitochondrial proteins. Statistical differences 735 

are indicated in brackets (*adjusted p-value ≤ 0.05, **adjusted p-value ≤ 0.01, ***adjusted p-value ≤ 0.001, 736 

****adjusted p-value ≤ 0.0001). C) Volcano plots of mitochondria-related genes over the course of DMD hiPSC 737 

differentiation. Statistical differences are symbolised with orange dots – vertical grey dashed lines represent 738 

DMD/Healthy ratio thresholds at 0.76 or 1.32 - the horizontal grey dashed line represents the adjusted p-value 739 
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threshold at 0.05 – The percentage of significantly dysregulated genes is indicated at the bottom right in grey. 740 

(D: day). 741 

Figure S1 – DMD variant expression over the course of hiPSC differentiation. A) Bright field microscope 742 

pictures at the 7 differentiation points giving rise to hiPSC-derived and tissue-derived MyoT. Possible 743 

cryopreservation time points are indicated by snowflakes. B) RT-qPCR relative quantification of DMD variants 744 

expression during differentiation of hiPSCs (D0) into MyoT (D25) with the related cycle threshold (CT) values 745 

(Ct: cycle threshold; D: day; hiPSC: human induced pluripotent stem cell; MyoB: myoblast; MyoT: myotube). 746 

Figure S2 – Gene ontology enrichments over the course of healthy and DMD hiPSC differentiation A) 747 

Proportions of significantly regulated mRNAs (adjusted p-value ≤ 0.01) between successive differentiation time 748 

points during the differentiation of healthy hiPSCs. Gene ontology enrichments on B) significantly regulated 749 

mRNAs between successive differentiation time points in healthy cells (number of genes in brackets) and C) 750 

significantly dysregulated mRNAs at each differentiation time points in DMD cells. The number of genes 751 

involved in these significant enrichments is indicated in brackets next to each GO term. In green, GO terms 752 

related to downregulated genes and in yellow, GO terms related to upregulated genes (BP: biological process; 753 

CC: cellular component; D: day; hiPSC: human induced pluripotent stem cell; MyoB: myoblast; MyoT: 754 

myotube). 755 

Figure S3 – Comparison of healthy and DMD cells at D10 and D17, protein analyses. Western blots and 756 

quantifications of A) SEMA6A at D10, B) GLI3 at D10 and C) GLI3 at D17. Omics comparison of mRNA and 757 

protein data at day 17: D) Venn diagram of the number of genes with |log2FoldChange| ≥ 0.4 and adjusted 758 

pvalue ≤ 0.05 in either transcriptomic or proteomic data, E) their associated Spearman correlation coefficient 759 

in brown, as well as D) their correlation graph with the number of genes with |log2FoldChange| ≥ 0.4 in both 760 

sets are indicated (genes with p-value ≥ 0.05 only in transcriptomics are in blue, only in proteomics in purple 761 

and in both in orange). (*p-value ≤ 0.05, **p-value ≤ 0.01, ***p-value ≤ 0.001, ****p-value ≤ 0.0001; D: day; 762 

GLI3FL: GLI3 full length; GLI3R: GLI3 repressor).  763 

Figure S4 – DMD knockdown at D17 in healthy cells. A) qPCR quantification of DMD expression related to 764 

exon skipping efficiency (%); B) Western blot quantification of dystrophin; and C) qPCR quantification of 765 

selected genes following exon skipping (boxplots of expression ratio of exon 7 skipped/unskipped conditions 766 
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when the exon skipping efficiency was above 70% at the top, and Spearman correlation between all skipped 767 

and unskipped conditions at the bottom; ****p-value < 0.0001, ns: not significant).  768 

Figure S5 – Comparison of hiPSC-derived and tissue-derived MyoT for the expression of cell cycle genes and 769 

myogenic regulators. Hierarchical clustering and heatmap of A) selected cell cycle transcripts and miRNAs, and 770 

B) DLK1, IGF2 and selected myosin transcripts in hiPSCs (D0), hiPSC- and tissue-derived MyoT. C) Dotplot of 771 

DMD/healthy expression ratio of muscle transcription factors. Significant statistical differences are shown in 772 

brackets (*adjusted p-value ≤ 0.05, **adjusted p-value ≤ 0.01, ***adjusted p-value ≤ 0.001, ****adjusted p-773 

value ≤ 0.0001). (hiPSC: human induced pluripotent stem cell; MyoT: myotube). 774 

Figure S6 – Dysregulations of metabolic pathways and mitochondrial genes during differentiation of DMD 775 

hiPSCs. A) Scheme of metabolism dysregulations at day 25. Dotplots of B) mitochondrial transcripts, C) 776 

transcripts coding mitochondrial protein import, and D) transcripts coding mitochondrial 777 

transcription/replication; E) Mitochondrial DNA quantification by qPCR at D25. Dotplots of mitochondrial 778 

proteins expressed at D17 involved in F) protein import, G) mitochondrial transcription/replication. Statistics 779 

are in brackets (*adjusted p-value ≤ 0.05, **adjusted p-value ≤ 0.01, ***adjusted p-value ≤ 0.001, 780 

****adjusted p-value ≤ 0.0001; D: day).  781 
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