162 research outputs found

    Test de vulnerabilidad = Vulnerability test

    Get PDF
    El test de vulnerabilidad es una de las herramientas que poseen los distintos operadores del sistema jurídico para determinar en ciertas situaciones si corresponde o no ejercitar la tutela reforzada de la cual son acreedores estas personas o grupos. Los pronunciamientos de la Corte Interamericana de Derechos Humanos –compatibilizados con nuestra realidad socio-cultural y jurídica- son una guía indispensable para poder llevar adelante este cometido central.   ABSTRACT: The vulnerability test is one of the tools that the different operators of the legal system have to determine in certain situations whether or not it is appropriate to exercise the reinforced protection of which these persons or groups are creditors. The pronouncements of the Inter-AmericanCourt of Human Rights -made compatible with our socio-cultural and legal reality- are an essential guide to be able to carry out this central task

    Substituent effects on EI-MS fragmentation patterns of 5-Allyloxy-1-aryl-tetrazoles and 4-Allyl-1-aryl-tetrazole-5-ones; Correlation with UV-induced fragmentation channels

    Get PDF
    1,4- and 1,5-disubstituted tetrazoles possess enriched structures and versatile chemistry, representing a challenge for chemists. In the present work, we unravel the fragmentation patterns of a chemically diverse range of 5-allyloxy-1-aryl-tetrazoles and 4-allyl-1-aryl-tetrazolole-5-ones when subjected to electron impact mass spectrometry (EI-MS) and investigate the correlation with the UV-induced fragmentation channels of the matrix-isolated tetrazole derivatives. Our results indicate that the fragmentation pathways of the selected tetrazoles in EI-MS are highly influenced by the electronic effects induced by substitution. Multiple pathways can be envisaged to explain the mechanisms of fragmentation, frequently awarding common final species, namely arylisocyanate, arylazide, arylnitrene, isocyanic acid and hydrogen azide radical cations, as well as allyl/aryl cations. The identified fragments are consistent with those found in previous investigations concerning the photochemical stability of the same class of molecules. This parallelism showcases a similarity in the behaviour of tetrazoles under EI-MS and UV-irradiation in the inert environment of cryogenic matrices of noble gases, providing efficient tools for reactivity predictions, whether for analytical ends or more in-depth studies. Theoretical calculations provide complementary information to articulate predictions of resulting products.FCT: UIDB/04326/2020 (CCMAR), UIDB/00313/2020 (CQC), PTDC/QUI-QFI/28973/2017, SFRH/BD/140249/2018info:eu-repo/semantics/publishedVersio

    Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)

    Get PDF
    El CIDCA es una Unidad Ejecutora en el área de Ciencia, Tecnología e Ingeniería de Alimentos vinculada al Centro Científico Tecnológico CONICET La Plata (CCT-La Plata), a la Facultad de Ciencias Exactas de la UNLP y a la CICPBA. En el CIDCA se realizan tareas de investigación científica y tecnológica, formación de recursos humanos, trabajos de desarrollo, innovación y transferencia de tecnología, así como servicios técnicos al sector productivo y a las instituciones que así lo requieran.Academia de la Ingeniería de la provincia de Buenos Aire

    Valorization of okara oil for the encapsulation of <i>Lactobacillus plantarum</i>

    Get PDF
    Oil-in-water (O/W) emulsions of okara oil-caseinate (1:2; 1:3 and 1:4 O/W ratios) were used to encapsulate Lactobacillus plantarum CIDCA 83114. Once encapsulated, microorganisms were freeze-dried or spray-dried, and observed by scanning electronic and confocal microscopies. A physical characterization of the dehydrated capsules was carried out by determining their moisture content, water activity, particle size, polydispersity index and zeta potential. Determining the induction times and peroxide values provided information about their susceptibility to oxidation. In turn, bacterial stability was analyzed by plate counting before and after freeze-drying and spray-drying, and during storage at 4 °C. Spray-dried emulsions had lower Z-sizes and polydispersity indexes, higher induction times and lower peroxide values than the freeze-dried ones, thus resulting better systems to protect L. plantarum CIDCA 83114. In addition, the culturability of spray-dried bacteria did not decrease neither after spray-drying nor up to 60 days of storage at 4 °C. The results showed that the better physical-chemical stability of spray-dried capsules determined the greater stability of microorganisms. This demonstrates the importance of defining adequate emulsions’ formulations for an efficient encapsulation of microorganisms, with promising applications in the development of novel functional foods.Centro de Investigación y Desarrollo en Criotecnología de Alimento

    Valorization of okara oil for the encapsulation of Lactobacillus plantarum

    Get PDF
    Oil-in-water (O/W) emulsions of okara oil-caseinate (1:2; 1:3 and 1:4 O/W ratios) were used to encapsulate Lactobacillus plantarum CIDCA 83114. Once encapsulated, microorganisms were freeze-dried or spray-dried, and observed by scanning electronic and confocal microscopies. A physical characterization of the dehydrated capsules was carried out by determining their moisture content, water activity, particle size, polydispersity index and zeta potential. Determining the induction times and peroxide values provided information about their susceptibility to oxidation. In turn, bacterial stability was analyzed by plate counting before and after freeze-drying and spray-drying, and during storage at 4 °C. Spray-dried emulsions had lower Z-sizes and polydispersity indexes, higher induction times and lower peroxide values than the freeze-dried ones, thus resulting better systems to protect L. plantarum CIDCA 83114. In addition, the culturability of spray-dried bacteria did not decrease neither after spray-drying nor up to 60 days of storage at 4 °C. The results showed that the better physical-chemical stability of spray-dried capsules determined the greater stability of microorganisms. This demonstrates the importance of defining adequate emulsions’ formulations for an efficient encapsulation of microorganisms, with promising applications in the development of novel functional foods.Centro de Investigación y Desarrollo en Criotecnología de Alimento

    Okara: A nutritionally valuable by-product able to stabilize <i>Lactobacillus plantarum</i> during freeze-drying, spray-drying, and storage

    Get PDF
    Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum. Considering that okara is an agro-waste obtained in large quantities, these results represent an innovative strategy to add it value, providing a symbiotic ingredient with promising industrial applications in the development of novel functional foods and feeds.Centro de Investigación y Desarrollo en Criotecnología de Alimento

    Self-aggregation in pyrrole: matrix isolation, solid-state infrared spectroscopy and DFT

    Get PDF
    Pyrrole (C 4 H 5 N) was embedded in low-temperature solid inert matrixes (argon, xenon; T ) 9 K) and both the monomer and low-order aggregates characterized by FTIR spectroscopy. The spectroscopic studies were complemented by extensive theoretical [DFT(B3LYP)/6-311++G(d,p)] structural and vibrational studies carried out for the monomer and their self-aggregates (up to four units). The calculated spectrum for monomeric pyrrole fits well those obtained immediately after deposition (at 9 K) of diluted matrixes, which can be prepared keeping the compound at low temperature before deposition and using low fluxes of the sublimate. Annealing of the matrixes to higher temperatures or increasing of the gaseous flux during deposition leads to aggregation, which can be easily recognized spectroscopically. On the basis of the theoretically predicted spectra for the monomer, dimer, trimers, and tetramers of pyrrole, assignments were proposed for the experimentally observed bands. It was also found that the formation of the hydrogen-bonded clusters shows a significant cooperativity effect, which was studied in detail and could be related with several structural and spectroscopic parameters. Infrared spectra of the pure solid compound at low temperatures in both amorphous and crystalline states were also studied and interpreted

    Applications of Infrared and Raman Spectroscopies to Probiotic Investigation

    Get PDF
    In this review, we overview the most important contributions of vibrational spectroscopy based techniques in the study of probiotics and lactic acid bacteria. First, we briefly introduce the fundamentals of these techniques, together with the main multivariate analytical tools used for spectral interpretation. Then, four main groups of applications are reported: (a) bacterial taxonomy (Subsection 4.1); (b) bacterial preservation (Subsection 4.2); (c) monitoring processes involving lactic acid bacteria and probiotics (Subsection 4.3); (d) imaging-based applications (Subsection 4.4). A final conclusion, underlying the potentialities of these techniques, is presented.Facultad de Ciencias Exacta

    Photochemical Transformations of Tetrazole Derivatives: Applications in Organic Synthesis

    Get PDF
    Tetrazoles remain a challenge to photochemists. Photolysis leads to cleavage of the tetrazolyl ring, may involve various photodegradation pathways and may produce a diversity of photoproducts, depending on the structure and conformational flexibility of the substituents and the possibility of tautomerism. If the photochemistry of tetrazoles is considered within the frame of synthetic applications the subject is even more challenging, since the ultimate goal is to achieve selectivity and high yield. In addition, the photoproducts must remain stable and allow isolation or trapping, in order to be used in other reactions. This review summarises the photochemical transformations of tetrazole derivatives that can be used as effective synthetic routes to other compounds

    Nutritional and technological properties of a quinoa (<i>Chenopodium quinoa</i> Willd.) : Spray-dried powdered extract

    Get PDF
    The relevance of an appropriate nutrition requires innovation in the design of food ingredients. The goal of this work was to obtain a powdered extract of quinoa by using spray-drying. To this aim, quinoa flour was suspended in water to obtain a soluble fraction mainly composed of proteins, starch, fiber, lipids, antioxidants and minerals. The spray-drying conditions of this quinoa soluble fraction were set-up in terms of inlet temperatures (150, 160, 170 and 180 °C) and feed flow (4.5, 7.5, 10.5 mL/min). The obtained powders were characterized by determining the proximate composition, antioxidant activity, microstructure, fatty acids' profile, and starch and proteins' structures. A correlation among the drying parameters and the chemical and functional attributes of the powders was addressed using principal component analysis. From a technological viewpoint the use of moderate feed flows (7.5 mL/min) and high inlet temperatures (180 °C) was the best combination to obtain high powder yields (85% d.b.), low aw (0.047 ± 0.005) and high solids content (0.956 ± 0.005). The drying temperature positively affected the structure of starch, improving swelling and favoring moderate agglomeration which increases the encapsulation properties of quinoa. These results support the use of spray-drying as a suitable method to obtain powdered extracts of quinoa without affecting the nutritional value, thus supporting their use as functional ingredients in the formulation of ready-to-eat foods.Centro de Investigación y Desarrollo en Criotecnología de Alimento
    corecore