3,313 research outputs found

    Ac magnetic susceptibility of a molecular magnet submonolayer directly patterned onto a microSQUID sensor

    Get PDF
    We report the controlled integration, via Dip Pen Nanolithography, of monolayer dots of ferritin-based CoO nanoparticles (12 Bohr magnetons) into the most sensitive areas of a microSQUID sensor. The nearly optimum flux coupling between these nanomagnets and the microSQUID improves the achievable sensitivity by a factor 100, enabling us to measure the linear susceptibility of the molecular array down to very low temperatures (13 mK). This method opens the possibility of applying ac susceptibility experiments to characterize two-dimensional arrays of single molecule magnets within a wide range of temperatures and frequencies.Comment: 4 pages 3 figure

    Actividad ovina y diversificación de los modos de vida rurales en la alta montaña mexicana

    Get PDF
    UnpublishedTomo I . Sección: Sistemas Ganaderos-Economía y Gestión. Sesión: Sostenibilidad. Ponencia nº 3

    Time dependence of breakdown in a global fiber-bundle model with continuous damage

    Full text link
    A time-dependent global fiber-bundle model of fracture with continuous damage is formulated in terms of a set of coupled non-linear differential equations. A first integral of this set is analytically obtained. The time evolution of the system is studied by applying a discrete probabilistic method. Several results are discussed emphasizing their differences with the standard time-dependent model. The results obtained show that with this simple model a variety of experimental observations can be qualitatively reproduced.Comment: APS style, two columns, 4 figures. To appear in Phys. Rev.

    Instability of scale-free networks under node-breaking avalanches

    Full text link
    The instability introduced in a large scale-free network by the triggering of node-breaking avalanches is analyzed using the fiber-bundle model as conceptual framework. We found, by measuring the size of the giant component, the avalanche size distribution and other quantities, the existence of an abrupt transition. This test of strength for complex networks like Internet is more stringent than others recently considered like the random removal of nodes, analyzed within the framework of percolation theory. Finally, we discuss the possible implications of our results and their relevance in forecasting cascading failures in scale-free networks.Comment: 4 pages, 4 figures, final version to be published in Europhys. Let

    Bounds for the time to failure of hierarchical systems of fracture

    Full text link
    For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically organized load-transfer models of fracture is non-zero for sets of infinite size. This fact could have a profound significance in engineering practice and also in geophysics. Here, we develop an exact algebraic iterative method to compute the successive time intervals for individual breaking in systems of height nn in terms of the information calculated in the previous height n1n-1. As a byproduct of this method, rigorous lower and higher bounds for the time to failure of very large systems are easily obtained. The asymptotic behavior of the resulting lower bound leads to the evidence that the above mentioned suspicion is actually true.Comment: Final version. To appear in Phys. Rev. E, Feb 199

    Probabilistic Approach to Time-Dependent Load-Transfer Models of Fracture

    Full text link
    A probabilistic method for solving time-dependent load-transfer models of fracture is developed. It is applicable to any rule of load redistribution, i.e, local, hierarchical, etc. In the new method, the fluctuations are generated during the breaking process (annealed randomness) while in the usual method, the random lifetimes are fixed at the beginning (quenched disorder). Both approaches are equivalent.Comment: 13 pages, 4 figures. To appear in Phys.Rev.

    Comparative study of PCR-sexing procedures using bovine embryos fertilized with sex-sorted spermatozoa

    Get PDF
    Sex determination in bovine embryos is a useful tool in reproductive biotechnology. This work compares two techniques of embryo sexing by polymerase chain reaction (PCR. Embryos were produced in vitro with sex-sorted sperm and two techniques of DNA lysis were tested (proteinase K versus heat shock). Subsequently, halves of each lysed sample was amplified both by amelogenin and BRY4a/SAT1 primers. Male embryos treated by both digestion methods and amplified by BRY4a/SAT1 gave higher rates of false negatives. Amelogenin amplification failed with embryos previously digested by proteinase K. In contrast, the lysis method allowed obtaining the best accuracy in terms of sex verification when using amelogenin amplification

    Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes

    Get PDF
    J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, Euan Hendry, and J. Gómez Rivas, Physical Review B, Vol. 76, article 241102(R) (2007). "Copyright © 2007 by the American Physical Society."A complete landscape is presented of the electromagnetic coupling between square holes forming a two-dimensional periodic array in a metallic film. By combining both experimental and theoretical results along with a first-principles Fano model, we study the crossover between the physics of metallic wire meshes (when holes occupy most of the unit cell) and the phenomenon of extraordinary optical transmission, which appears when the size of the holes is very small in comparison with the period of the array

    On the system performance of DFT-S-OFDM and CP-OFDM for 5G Uplink in mmWave band

    Get PDF
    Both conventional Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) and Discrete Fourier Transform Spread OFDM (DFT-S-OFDM) have been adopted for their use in the Physical Uplink Shared Channel (PUSCH) in the 5G New Radio (NR) standard. While CP-OFDM can better exploit the frequency characteristics of the channel, DFTS-OFDM has the advantage of a lower peak-to-average power ratio (PAPR). Due to the interactions between PAPR and power amplifier (PA) non-linearity, users adopting DFT-S-OFDM waveform may benefit from a potentially higher PA efficiency and extend their coverage by increasing their transmit power. In this paper we study the uplink performance of both waveforms and their interaction with non-linear PA and uplink power control in the millimeter-wave (mmWave) band to determine their optimal operational range
    corecore