9 research outputs found

    Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa

    Get PDF
    Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and seven reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera aquibella, Annulohypoxylon albidiscum, Astrocystis thailandica, Camporesia sambuci, Clematidis italica, Colletotrichum menispermi, C. quinquefoliae, Comoclathris pimpinellae, Crassiparies quadrisporus, Cytospora salicicola, Diatrype thailandica, Dothiorella rhamni, Durotheca macrostroma, Farasanispora avicenniae, Halorosellinia rhizophorae, Humicola koreana, Hypoxylon lilloi, Kirschsteiniothelia tectonae, Lindgomyces okinawaensis, Longiostiolum tectonae, Lophiostoma pseudoarmatisporum, Moelleriella phukhiaoensis, M. pongdueatensis, Mucoharknessia anthoxanthi, Multilocularia bambusae, Multiseptospora thysanolaenae, Neophaeocryptopus cytisi, Ocellularia arachchigei, O. ratnapurensis, Ochronectria thailandica, Ophiocordyceps karstii, Parameliola acaciae, P. dimocarpi, Parastagonospora cumpignensis, Pseudodidymosphaeria phlei, Polyplosphaeria thailandica, Pseudolachnella brevifusiformis, Psiloglonium macrosporum, Rhabdodiscus albodenticulatus, Rosellinia chiangmaiensis, Saccothecium rubi, Seimatosporium pseudocornii, S. pseudorosae, Sigarispora ononidis and Towyspora aestuari. New combinations are provided for Eutiarosporella dactylidis (sexual morph described and illustrated) and Pseudocamarosporium pini. Descriptions, illustrations and / or reference specimens are designated for Aposphaeria corallinolutea, Cryptovalsa ampelina, Dothiorella vidmadera, Ophiocordyceps formosana, Petrakia echinata, Phragmoporthe conformis and Pseudocamarosporium pini. The new species of Basidiomycota are Agaricus coccyginus, A. luteofibrillosus, Amanita atrobrunnea, A. digitosa, A. gleocystidiosa, A. pyriformis, A. strobilipes, Bondarzewia tibetica, Cortinarius albosericeus, C. badioflavidus, C. dentigratus, C. duboisensis, C. fragrantissimus, C. roseobasilis, C. vinaceobrunneus, C. vinaceogrisescens, C. wahkiacus, Cyanoboletus hymenoglutinosus, Fomitiporia atlantica, F. subtilissima, Ganoderma wuzhishanensis, Inonotus shoreicola, Lactifluus armeniacus, L. ramipilosus, Leccinum indoaurantiacum, Musumecia alpina, M. sardoa, Russula amethystina subp. tengii and R. wangii are introduced. Descriptions, illustrations, notes and / or reference specimens are designated for Clarkeinda trachodes, Dentocorticium ussuricum, Galzinia longibasidia, Lentinus stuppeus and Leptocorticium tenellum. The other new genera, species new combinations are Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis from Neocallimastigomycota, Phytophthora estuarina, P. rhizophorae, Salispina, S. intermedia, S. lobata and S. spinosa from Oomycota, and Absidia stercoraria, Gongronella orasabula, Mortierella calciphila, Mucor caatinguensis, M. koreanus, M. merdicola and Rhizopus koreanus in Zygomycota

    Juazeiro hay in diets of Morada Nova sheep

    No full text
    This study evaluated intake and apparent digestibility of the nutrients in the diet of Morada Nova sheep that received diets containing increasing levels of juazeiro hay in substitution of Tifton 85 bermudagrass hay (0, 33, 67 and 100%). Sixteen non castrated male sheep, weighing an average of 26.75 kg, were used, placed in individual metabolic cages and distributed in a completely randomized block design with four treatments and four replications. Intakes of dry matter, organic matter, crude protein, ether extract, neutral detergent fiber, total carbohydrates, fibrous carbohydrates and non-fibrous carbohydrates and total digestible nutrients were not influenced by the addition of juazeiro hay to the diets, with mean values of 1,042.78 and 595.59 g/day of dry matter and neutral detergent fiber intake, respectively. Linear reduction was observed for digestibility of the dry matter, organic matter, neutral detergent fiber and fibrous carbohydrates. Quadratic reduction was observed for the acid detergent fiber digestibility coefficient. The digestibility coefficients of the crude protein, ether extract, total carbohydrates and fibrous carbohydrates were not significant. The nitrogen balance was not influenced and was positive for all the treatments. The inclusion of juazeiro hay did not influence nutrient intake or nitrogen balance, but reduced the digestibility coefficient of some diet components

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore